1 |
A. E. M. Eljialy, Sultan Ahmad,"Errors Detection Mechanism in Big Data",IEEE, Second International Conference on Smart Systems and Inventive Technology (ICSSIT 2019) on 27-29 November, 2019
|
2 |
Torabi, M., Hashemi, S., Saybani, M. R., Shamshirband, S., & Mosavi, A. (2019). A Hybrid clustering and classification technique for forecasting short-term energy consumption. Environmental progress & sustainable energy, 38(1), 66-76.
DOI
|
3 |
Guha, S., Rastogi, R., & Shim, K. (1998). CURE: An efficient clustering algorithm for large databases. ACM Sigmod record, 27(2), 73-84.
DOI
|
4 |
Pandove, D., Goel, S., & Rani, R. (2018). Systematic review of clustering high-dimensional and large datasets. ACM Transactions on Knowledge Discovery from Data (TKDD), 12(2), 1-68.
DOI
|
5 |
Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The computer journal, 41(8), 578-588.
DOI
|
6 |
Murtagh, F., & Contreras, P. (2017). Algorithms for hierarchical clustering: an overview, II. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 7(6), e1219.
|
7 |
Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., ... & Lin, C. T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664-681.
DOI
|
8 |
Pavithra, M., & Parvathi, R. M. S. (2017). A survey on clustering high dimensional data techniques. International Journal of Applied Engineering Research, 12(11), 2893-2899.
|
9 |
Han, J.,Pie, J., & Kamber, M. (2010). Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2010.
|
10 |
Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., & Mathieu, C. (2019). Hierarchical clustering: Objective functions and algorithms. Journal of the ACM (JACM), 66(4), 1-42.
|
11 |
Bansal, A., Sharma, M., & Goel, S. (2017). Improved Kmean clustering algorithm for prediction analysis using classification technique in data mining. International Journal of Computer Applications, 157(6), 0975-8887.
|
12 |
Bouguettaya, A., Yu, Q., Liu, X., Zhou, X., & Song, A. (2015). Efficient agglomerative hierarchical clustering. Expert Systems with Applications, 42(5), 2785-2797.
DOI
|
13 |
Popat, S. K., & Emmanuel, M. (2014). Review and comparative study of clustering techniques. International journal of computer science and information technologies, 5(1), 805-812.
|
14 |
Elavarasi, S. A., Akilandeswari, J., & Sathiyabhama, B. (2011). A survey on partition clustering algorithms. International Journal of Enterprise Computing and Business Systems, 1(1).
|
15 |
Pandove, D., Goel, S., & Rani, R. (2018). Systematic review of clustering high-dimensional and large datasets. ACM Transactions on Knowledge Discovery from Data (TKDD), 12(2), 1-68
DOI
|
16 |
Nanda, S. J., & Panda, G. (2014). A survey on nature inspired metaheuristic algorithms for partitional clustering. Swarm and Evolutionary computation, 16, 1-18.
DOI
|
17 |
Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. The principles and practice of numerical classification.
|
18 |
Agrawal, R., Gehrke, J., Gunopulos, D., & Raghavan, P. (2005). Automatic subspace clustering of high dimensional data. Data Mining and Knowledge Discovery, 11(1), 5-33.
DOI
|
19 |
Kameshwaran, K., & Malarvizhi, K. (2014). Survey on clustering techniques in data mining. International Journal of Computer Science and Information Technologies, 5(2), 2272-2276.
|
20 |
Shah, M., & Nair, S. (2015). A survey of data mining clustering algorithms. International Journal of Computer Applications, 128(1), 1-5.
DOI
|
21 |
Ding, C., He, X., Zha, H., & Simon, H. D. (2002, December). Adaptive dimension reduction for clustering high dimensional data. In 2002 IEEE International Conference on Data Mining, 2002. Proceedings. (pp. 147-154). IEEE.
|
22 |
Fu, X., Zeng, X. J., Feng, P., & Cai, X. (2018). Clustering-based short-term load forecasting for residential electricity under the increasing-block pricing tariffs in China. Energy, 165, 76-89.
DOI
|
23 |
Mohammed, N. N., & Abdulazeez, A. M. (2017, June). Evaluation of partitioning around medoids algorithm with various distances on microarray data. In 2017 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pp. 1011-1016). IEEE.
|
24 |
Makwana, T. M., & Prashant, R. (2013). Partitioning Clustering algorithms for handling numerical and categorical data: a review. arXiv preprint arXiv:1311.7219.
|
25 |
Khanmohammadi, S., Adibeig, N., & Shanehbandy, S. (2017). An improved overlapping k-means clustering method for medical applications. Expert Systems with Applications, 67, 12-18.
DOI
|
26 |
Fraley, C., & Raftery, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. The computer journal, 41(8), 578-588.
DOI
|
27 |
Shakeel, P. M., Baskar, S., Dhulipala, V. S., & Jaber, M. M. (2018). Cloud based framework for diagnosis of diabetes mellitus using K-means clustering. Health information science and systems, 6(1), 1-7.
DOI
|
28 |
Murtagh, F. (1983). A survey of recent advances in hierarchical clustering algorithms. The computer journal, 26(4), 354-359.
DOI
|
29 |
Zafar, M. H., & Ilyas, M. (2015). A clustering based study of classification algorithms. International journal of database theory and application, 8(1), 11-22.
DOI
|
30 |
Assent, I. (2012). Clustering high dimensional data. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(4), 340-350.
DOI
|