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A dataset can be clustered by merging the bucket indices that come from the random projection of locality sensitive 
hashing functions. It should be noted that for this to work the merging interval must be calculated first. To improve 
the feasibility of large scale data clustering in high dimensional space we propose an enhanced Locality Sensitive 
Hashing Clustering Method. Firstly, multiple hashing functions are generated. Secondly, data points are projected to 
bucket indices. Thirdly, bucket indices are clustered to get class labels. Experimental results showed that on synthetic 
datasets this method achieves high accuracy at much improved cluster speeds. These attributes make it well suited to 
clustering data in high dimensional space.
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1. INTRODUCTION

Data clustering is an important task in many areas, as such 
many clustering algorithms have been developed. However, 
many of these are neither effective nor efficient for data points 
in high dimensional spaces. There are several main reasons for 
this. Firstly, the inherent sparsity of high dimensional data hin-
ders conventional clustering algorithms. Secondly, the distance 
between any two points becomes almost the same in high di-
mensional space [1], therefore it is difficult to differentiate simi-
lar data points from dissimilar ones. Thirdly, clusters are often 
embedded in subspaces of high dimensional space, and different 
clusters may exist in different subspaces [2].

Image clustering is a typical application of high dimensional 
clustering algorithms, this is because for image features nearly 
all the dimensions are high. So, the problem of high dimensional 
clustering is very apparent in image clustering applications. 
What’s more, the scale of an image dataset is generally large, 
and this scale may also change in some online applications. The 

performance of conventional clustering algorithms deteriorates 
significantly when used on this kind of dataset. For example, k-
means is the mainstream cluster method in the image visual 
bag of words model for visual dictionary construction. However, 
when the number of images is large, the time taken to cluster is 
very long and may even be unacceptable for practical purposes. 
On top of this, when the image data is ever increasing, re-cluster-
ing is needed for k-means as it is not a dynamic cluster method. 
These limitations of k-means seriously damage its feasibility for 
use with large incremental image datasets. Some improvements 
to k-means, such as hierarchal k-means [3] and approximate 
k-means [4], have been presented, however, these have been 
shown not to support dynamic clustering [5]. Currently, widely 
used clustering methods such as spectrum clustering [6] and 
Affinity Propagation [7] methods incur high memory and com-
putation costs due to the matrix factorization that they require. 
Therefore, a more efficient, new cluster method is needed. 

Random projection is used in many areas including fast ap-
proximate nearest-neighbor applications [8,9], clustering [10], 
signal processing [11], anomaly detection [12] and dimension 
reduction [13]. This is largely due to the fact that distances are 
preserved under such transformations in certain circumstances 
[14]. Moreover, random projections have also been applied to 
classifications for a variety of purposes [15,16]. 

E2LSH(Exact Euclidean Locality Sensitive Hashing) is a spe-
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cial case of random projection, and it was first introduced as 
approximate near neighbor algorithm [17]. E2LSH has attracted 
much attention recently, and has mainly been used in retrieval 
[18,19]. In fact, the data points projected into the same buck-
ets were found to be much more similar than those projected 
into different buckets. So, if we take a dataset and divide into 
groups according to its bucket indices, the task of data cluster-
ing has already be achieved to a certain approximation. What’s 
more, E2LSH is a data independent method, so it can create a 
dynamic index for an incremental dataset. In this way, E2LSH 
can be used as a dynamic clustering method. In fact, the in-
troducer of LSH has pointed out that LSH can serve as a fast 
clustering algorithm, but he did this without going on to vali-
date the claim. In fact, E2LSH has even been applied to noun 
clustering by Ravichandran D [20]. However, clustering image 
data is more difficult than text word data because of its added 
complexity.

Therefore, we proposed an enhanced Locality Sensitive Clus-
tering (LSC) method for use in high dimensional space based 
on E2LSH. This method takes advantage of Locality Sensitive 
Hashing (LSH) and can cluster high dimension data at a high 
speed.

2. ENHANCED LOCALITY SENSITIVE 
CLUSTERING BASED ON RANDOM 
PROJECTION

The main property of random projection is dimension reduc-
tion. Compared with the classical dimension reduction algorithm 
PCA (Principal Component Analysis), random projection offers 
many benefits [21]. For example, generally PCA can’t be used to 
reduce the dimension of a mixture of n Gaussians to below (Ωn), 
whereas random projection can reduce the dimension to just 
Ω(log n). Random Projection has another tremendous benefit, 
even if the original Gaussians are highly skewed, their projected 
counterparts will be more spherical. This is a great advantage as 
it is much easier to design algorithms for spherical clusters than 
ellipsoidal ones. 

As for data clustering, the Johnson-Lindenstrauss Lemma 
shows that the distances to data points are preserved after pro-
jection. This makes it capable for use in approximate nearest 
neighbor search when performing information retrieval. 

2.1 The distance preservation of random 
projection

The Johnson-Lindenstrauss Lemma is famous for its dis-
tance preservation property. It can be described like this: Given 
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This lemma says that all pairwise distances are preserved, with 
high probability, up to 1±γ after mapping.

Let N(0,1) denote the standard normal distribution with mean 
0 and variance 1, and U(-1,1) denote the distribution that has the 
probability 1/2 on -1 and probability 1/2 on 1.

Let u,v∈Rn, 
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dom matrix, whose entries are chosen independently from either 
or . Then
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Imagine a set S of data in some high-dimensional space Rn, 
and suppose that we randomly project the data down to Rd. By 

the Johnson-Lindenstrauss Lemma, ( )2 logd O Sg-=  is suf-
ficient so that, with high probability, all angles between points 
change by at most ±γ/2 [22]. In particular, consider projecting 
all points in S and the target vector ω, if initially data was sepa-
rable by margin γ, then after projection, since angles with ω have 
changed by at most γ/2, the data will still be separable. 

2.2 Locality sensitive clustering

E2LSH is a special case of LSH (Locality Sensitive Hashing), 
and it is a random projection based method. This can be illus-
trated by the definition of the hashing function. The k hashing 
functions are generated by random methods, and their inner-
product performs the data projection. This, however, is different 
from general random projection, because each data point is 
projected by k hashing functions, and as such results in k bucket 
indices that represent an original point. The k hashing functions 
also indicate a difference from general random projection in 
two ways. The first is the projection itself, the projection was not 
performed on the whole axis in one direction, but on parts of 
the axis. The second is that general projection is done by a ma-
trix operation (a data point multiplies a n×d random projection 
matrix A), but in E2LSH, a data point multiplies a single hashing 
vector, as such the matrix operation is omitted in E2LSH. This is 
of vital importance for large-scale data processing, because the 
multiple matrix operations needed by traditional algorithms are 
impractical due to high computation and memory costs.

E2LSH can also be used for data clustering. Based on the sepa-
rability description above, we can say a dataset’s distance, mar-
gin and angle could be preserved after projection. These proper-
ties make E2LSH feasible for data clustering. In fact, the bucket 
indices found after projection can be used to group data points. 
This comes from the fact that similar data are arranged into a 
single bucket or the adjacent several buckets. So if we group 
these into a cluster, and further group all similar groups into cor-
responding clusters, the goal of data clustering can be achieved. 
This is the main idea behind Locality Sensitive Clustering.

E2LSH is based on the p - stable distribution function, its single 
hashing function is defined as:

  

(3)

where a is a n-dimension vector generated by the p - stable 
distribution function, and the inner-product (a·v) works as a 
single channel random projection, b is the offset added to the 
random projection, and the module operation ensure the pro-
jected value (bucket index) is in a specific range.

The projection function is similar to LSH and projects points 
in n


 to k


:
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The enhanced Locality Sensitive Clustering (LSC) includes 
several main steps. Firstly, optimal parameters k and L are com-
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puted. Secondly, the hashing function for point v
 a v bh

w
ê ú× +ê ú=
ê úë û

 

is constructed. Thirdly, all points are projected to bucket index 
(h1,···hk), and the bucket indices of all points are clustered to get 
the cluster labels. The procedure for enhanced Locality Sensitive 
Clustering (LSC) is shown below: 

Step 1, the optimal parameters k and L are calculated for a da-
taset S.

Step 2, k dimension vector A is generated from the Gaussian 
distribution, b and w are also generated according the definition 
of the LSH function.

Step 3, all the points vi∈S are projected to a k dimension 
bucket index Bi, and these bucket indices constitute a matrix B.

Step 4, randomly selected one column Bj from matrix B, and 

cluster bucket indices Bj to get n clusters where j∈[l,m], m= S  
and n is the number of clusters.

  

(5)

where lk denotes the cluster labels, lk = k, k∈[1,n], n<m.
Step 5, assign points in Bj to class k

(6)

where Bj
-1 denotes the points whose bucket index is Bj.

3. EXPERIMENTS

3.1 Experiments on an image dataset

To verify the effect of the new clustering method on real data, 
we constructed an image set from the TRECVID image dataset, 
the set contains four categories and 75 images total. The 4 cat-
egories are ‘compere’, ‘singer’, ‘rice’ and ‘sports’.

To compare the performance of our new algorithm, we first 
ran k-means on this image set. The results of k-means on the im-
age dataset are showed in Fig. 1.

The result of LSC on the image dataset is shown in Fig. 2. Most 
of the cluster labels in cluster 2 and 4 are correct, the clustering 
labels of cluster 3 are correct while several cluster labels of clus-
ter 1 are wrong. We can see that the accuracy of clustering labels 
are less than in the synthetic data, this is because the distinct-
ness of inter-clusters are less than in the synthetic data. However, 
results on real data are more meaningful. 

As LSC is a randomized algorithm, it is understandable that its 
clustering results are less accurate than k-means. On the other 
hand, the advantage of LSC lies in its low computation cost, fast 
running speed and the dynamic clustering which comes from 
E2LSH.

To compare the accuracy of the two methods, we computed 
a MAP of the clustering results for the 4 classes using LSC, k-
means, Affinity Propagation (AP) cluster and Spectrum Cluster 
(SC) methods. The results are showed in Fig. 3. It can be seen 
that the accuracy of LSC is about 0.9, which is less than k-means, 
AP and SC.

To compare clustering times, we ran the four cluster methods 
(LSC, k-means, AP cluster and SC) on the image dataset. The re-
sults are showed in table 1. It can be seen that LSC consumes the 
least time while AP and SC cost significantly more time than LSC 
and k-means. 

cluster

j kB l→

1( ) , jclassLabel v k v S B −=    ∈  

Fig. 3. Accuracy of clustering results for four clustering methods on 
the image dataset.

Fig. 1. Clustering results of k-means for image dataset. 

Fig. 2. The clustering results of LSC for image dataset.

Table. 1. Clustering times of the four clustering methods on the im-
age dataset

k-means SC AP LSC
0.0156 0.094 4.3335 0.0127
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3.2 Experiments on an incremental dataset

To conveniently see the running time of our new clustering 
method, we construct a synthetic dataset 1 and synthetic dataset 
2. Synthetic dataset 1 is an incremental dataset in scale, which 
contains 5 clusters of 100 dimension pieces of data, the number 
of data points increases from 1,000 to 10,000. Synthetic dataset 
2 is an incremental dataset in dimension, which contains 5 clus-
ters of 1,000 data points, the dimension of the points increases 
from 10 dimension data to 100 dimension data.

The running time of LSC and k-means for these two datasets is 
shown in Fig. 4. Figure 4 (a) indicates that the running time of k-
means increases much more quickly than LSC when the number 
of data points increases from 1,000 to 10,000. When the number 
of data points is at 1,000, the time cost of k-means is at least 
100 times more than that of LSC, and when the number of data 
points increases to 1,000, the time cost of k-means is at least 1,000 
times more than that of LSC. Therefore, the advantage of LSC be-
comes more notable in larger scale datasets. In Fig. 4 (b), we can 
see the higher the dimensions of the data used is, the more no-
table the advantage of LSC is. Even in with low dimension data of 
10, the time cost of k-means is at least 10 times more than LSC. 
To compare the cluster accuracy, MAPs of the two methods were 
calculated for these two datasets. The results are shown in Fig. 
5. The figure indicates that the cluster accuracy of LSC is similar 
to k-means, and may be better than k-means on some datasets. 
Therefore, LSC is more suitable for incremental datasets, and it 

can be a good cluster method for both high dimension and large-
scale datasets.

4 CONCLUSIONS

To improve the feasibility of high dimensional data cluster-
ing, especially for use in image clustering, an enhanced Local-
ity Sensitive Clustering method based on E2LSH is presented. 
This method first generates multiple hashing functions, then it 
projects each point using these hashing functions to get bucket 
indices. The bucket indices are then clustered to get class labels. 
In terms of clustering accuracy, experimental results show that 
LSC’s performance is close to k-means, AP and SC. The advan-
tage of LSC is its fast running speed that makes it suitable for 
incremental clustering. This property makes it a very valuable 
method for large dataset clustering and especially for incremen-
tal dataset clustering.
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