• Title/Summary/Keyword: Clubroot

Search Result 79, Processing Time 0.036 seconds

Soil-blending Effect of Eggshell Powder on the Control of Club root Disease and the Growth of Chinese Cabbage in the Field (배추 무사마귀병 발병 억제 및 생육증진을 위한 달걀껍질 토양혼화처리 효과)

  • Gao, Yuliang;Kim, Byeong-Kwan;Lim, Tae-Heon;Li, Kui-Hua;Paek, Kee-Yoeup;Cha, Byeong-Jin
    • Research in Plant Disease
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Before transplanting Chinese cabbage seedlings, two kinds of eggshell powder were blended into the soil of cabbage field where the club root pathogen, Plasmodiophora brassicae, was infested. The incidence of clubroot disease, the shoot and root growth of cabbages, and soil pH were examined four times at 10 to 13 days interval from transplanting Chinese cabbage. As results, the cabbages treated with eggshell powder without membrane showed the fastest growth in above ground part, and the lowest disease index for clubroot disease. The cabbages treated with eggshell powder with membrane showed better growth than the cabbages of non-treated check, but lower growth than those treated with eggshell powder without membrane. Soil pH started to increase from 3 weeks after soil blending of eggshell powder, and it reached to above 8.0. However, the soil pH of non-treated check stayed at around 6.8. In the experiment to compare the effect of eggshell powder with other calcium compounds, soil-blending of $CaCO_3$ resulted the lowest disease incidence of 1.7 and the registered fungicide, 'flusulfamide', and the resistant variety 'CR Green cabbage' followed with the incidence of 1.9. Cabbages of non-treated check scored the highest disease incidence, 3.4, and that of eggshell powder without membrane was as high as 2.7. However, the growth of Chinese cabbage showed the different pattern to the disease incidence. Chinese cabbages treated with eggshell without membrane recorded the highest average growth, around 2.1 kg. On the other hand, the average growth of CR Green Chinese cabbage was about 2.0 kg, that of flusulfamide-treatment plot was 1.7, and that of non-treated check was as low as 1.3 kg. Soil blending of eggshell powder without membrane did not inhibit the development of clubroot, but increased the growth of cabbage to a great extent. Therefore, it was confirmed that soil blending of eggshell powder before transplanting makes the Chinese cabbage culture possible even in the field infested with club root pathogen.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF

Screening of Resistance of Introduced Kimchi Cabbage (Brassica rapa subsp. pekinensis) Germplasm from Asian areas to Plasmodiophora brassicae Isolates Collected in Korea. (배추 아시아 도입 유전자원의 국내 재배포장에서 수집한 뿌리혹병 균주에 대한 저항성 반응)

  • Jeon, Young-Ah;Lee, Ho-Sun;Rhee, Ju-Hee;Lee, Jae-Eun;Ko, Ho-Cheol;Aseefa, Awraris Derbie;Sung, Jung-Sook;Hur, On-sook;Ro, Na-young;Lee, Sok-Young
    • Journal of the Korean Society of International Agriculture
    • /
    • v.30 no.4
    • /
    • pp.305-312
    • /
    • 2018
  • Clubroot, caused by Plasmodiophora brassicae, is one of the most crucial disease in Kimchi cabbage. Screening disease resistant genetic resources is necessary to develop disease resistant cultivars and conduct related research. We have evaluated the development of clubroot to the 120 genetic resources of Kimchi cabbage introduced from World Vegetable Center and five Asian countries using isolate of Plasmodiophora brassicae collected in Haenam fields in Jeollanam-do Province, Rep. of Korea. This isolate was determined race 2 using differential varieties reported by Kim et al., 2016. IT100384 and IT305623 showed strong resistance, lower than disease index (DI) 1.0. IT100385, 100439, and 135407 showed moderate resistance (1.0

Surveys on Disease Occurrence in Major Horticultural Crops in Kangwon Alpine Areas (강원도 고랭지 주요 원예작물의 병해 발생 상황)

  • Hahm, Young-Il;Kwon, Min;Kim, Jeom-Soon;Seo, Hyo-Won;Ahn, Jae-Hoon
    • Korean Journal Plant Pathology
    • /
    • v.14 no.6
    • /
    • pp.668-675
    • /
    • 1998
  • These surveys were conducted to check the occurrence of disease in various horticultural crops in alpine areas, especially Daekwallyong areas, Pyongchang-Gun, and Hyeongseong-Gun in Kangwon province. TuMV on Chinese cabbage was one of the most serious diseases, especially in 1994 and 1997. The incidence of soft rot and clubroot has been increased gradually. Brittle root rot on Chinese cabbage was significantly decreased. Soft rot, gray mold, downy mildew, powdery mildew, bottom rot and Alternaria leaf spot were the common diseases on most vegetable crops. Gray mold (Botrytis cinerea) on celery, cercospora leaf spot (Cercospora sp.) on melon, powdery mildew (Erysiphe cichoracearum) on lettuce, and clubroot (Plasmodiophora brassicae) on parsley are newly found in Korea. The most common and predominant diseases were viruses, especially CMV, TMV, TuMV, BBMV, and gray mold, wilts, and cercospora leaf spot on many flowers in alpine areas. Fusarium oxysporum f. sp. eustomae causing wilting on lisianthus (Eustoma grandiflorum), Turnip mosaic virus causing mosaic and color breaking on stock, Cercospora spp. causing cercospora leaf spot on various wild lily, Cladosporum echinulatum causing leaf spot on carnation, and phytoplasma causing witches' broom on statice (Limonium sinuatum) and blazing star (Liatris spp.) were newly found during these surveys in Korea.

  • PDF

Biological Control of Soil-borne Diseases with Antagonistic Bacteria

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Han, Kwang-Seop;Kim, Jong-Tae;Park, In-Hee
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.25-25
    • /
    • 2016
  • Biological control has many advantages as a disease control method, particularly when compared with pesticides. One of the most important benefits is that biological control is an environmental friendly method and does not introduce pollutants into the environment. Another great advantage of this method is its selectivity. Selectivity is the important factor regarding the balance of agricultural ecosystems because a great damage to non target species can lead to the restriction of natural enemies' populations. The objective of this research was to evaluate the effects of several different bacterial isolates on the efficacy of biological control of soil borne diseases. White rot caused by Sclerotium cepivorum was reported to be severe disease of garlic and chive. The antifungal bacteria Burkholderia pyrrocinia CAB08106-4 was tested in field bioassays for its ability to suppress white rot disease. In field tests, B. pyrrocinia CAB08106-4 isolates suppressed white rot in garlic and chive, with the average control efficacies of 69.6% and 58.9%, respectively. In addition, when a culture filtrate of B. pyrrocinia CAB08106-4 was sprayed onto wounded garlic bulbs after inoculation with a Penicillium hirstum spore suspension in a cold storage room ($-2^{\circ}C$), blue mold disease on garlic bulbs was suppressed, with a control efficacy of 79.2%. These results suggested that B. pyrrocinia CAB08106-4 isolates could be used as effective biological control agents against both soil-borne and post-harvest diseases of Liliaceae. Chinese cabbage clubroot caused by Plasmodiophora brassicae was found to be highly virulent in Chinese cabbage, turnips, and cabbage. In this study, the endophytic bacterium Flavobacterium hercynium EPB-C313, which was isolated from Chinese cabbage tissues, was investigated for its antimicrobial activity by inactivating resting spores and its control effects on clubroot disease using bioassays. The bacterial cells, culture solutions, and culture filtrates of F. hercynium EPB-C313 inactivated the resting spores of P. brassicae, with the control efficacies of 90.4%, 36.8%, and 26.0%, respectively. Complex treatments greatly enhanced the control efficacy by 63.7% in a field of 50% diseased plants by incorporating pellets containing organic matter and F. hercynium EPB-C313 in soil, drenching seedlings with a culture solution of F. hercynium EPB-C313, and drenching soil for 10 days after planting. Soft rot caused by Pectobacterium carotovorum subsp. carotovorum was reported to be severe disease to Chinese cabbage in spring seasons. The antifungal bacterium, Bacillus sp. CAB12243-2 suppresses the soft rot disease on Chinese cabbage with 73.0% control efficacy in greenhouse assay. This isolate will increase the utilization of rhizobacteria species as biocontrol agents against soft rot disease of vegetable crops. Sclerotinia rot caused by Sclerotinia sclerotiorum has been reported on lettuce during winter. An antifungal isolate of Pseudomonas corrugata CAB07024-3 was tested in field bioassays for its ability to suppress scleritinia rot. This antagonistic microorganism showed four-year average effects of 63.1% of the control in the same field. Furthermore, P. corrugata CAB07024-3 has a wide antifungal spectrum against plant pathogens, including Sclerotinia sclerotiorum, Sclerotium cepivorum, Botrytis cinerea, Colletotrichum gloeosporioides, Phytophotra capsici, and Pythium myriotylum.

  • PDF

Genetic Mapping of Resistant Genes in Brassica pekinensis Against Plasmodiophora brassicae Race 6

  • Lee, Gung-Pyo;Baek, Nam-Kwon;Park, Kuen-Woo
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.266-270
    • /
    • 2002
  • Inbred lines of Chinese cabbage KU-101 (resistant line against Plasmodiophora brassicae race race 6) and CS-113 (susceptible line) were crossed and their progeny lines F$_1$, BC$_1$F$_1$, F$_2$, and F$_3$ were produced for the construction of the genetic linkage map of R brassicae race 6-resistant Brassica campestris ssp. pekinensis genome. Restriction fragment length polymorphism (RFLP) was applied to compare between parents and their f$_2$ progenies with a total of 192 probes and 5 restriction enzymes. The constructed RFLP map covered 1,104 cM with a mean distance between genetic marker of 8.0 cM, and produced 10 linkage groups having 121 genetic loci. The loci of P. brassicae race 6 (CR6)-resistant Brassica genome were determined by interval mapping of quan-titative trait loci (QTL), which resulted from bioassay using the same race of the fungi in P3 population. Resistant loci were estimated in numbers 1 (Gl) and 3 (G3) linkage groups. In the regression test, Gl had a value of4.8 logarithm of odd (LOD) score, while C3 had values of 4.2-7.2. Given these results, the location of the CR6-resistant loci within the Brassica genome map can now be addressed.

Some Environmental factors Affecting Decay of Root Galls in Club Root Disease of Chinese Cabbage (배추무사마귀병 뿌리혹의 부패에 미치는 몇가지 환경요인)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Hong-Mo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.61-65
    • /
    • 2000
  • Effects of temperature, soil moisture level, flooding, and soil microflora on decay of root galls in club root disease of Chinese cabbage were examined in the laboratory. Number of days required for complete decay of root galls was 3 days at $32^{\circ}C$ or higher, 12 days at $16{\sim}20^{\circ}C$ and 28 days at $8^{\circ}C$. As soil moisture content goes up, root gall decay became faster resulting 3 days for complete decay under saturated moisture condition at high temperature of $32^{\circ}C$, and 8 days under the same moisture level at $24^{\circ}C$. Soil moisture effect was relatively low at $24^{\circ}C$ compared to $32^{\circ}C$. Stimulation of decay by soil flooding was not observed at $32^{\circ}C$ but became apparent at $12^{\circ}C$. Influence of soil microflora on root gall decay was negligiable. Based on these results, temperature appears to be the most important factor affecting root gall decay in soil. Root gall decay is thought to be affected more easily by other environmental factors under low temperature conditions. Maturity of resting spores of Plasmodioprora brassicae in root galls tended to increase as time prolongs during root gall decay. Density of the resting spores was lower in fresh root galls where their maturity was also low as compared to completely decayed root galls. Number of resting spores in completely decayed root gall was $6.5{\times}10^{6}/g$ tissue and its maturity was over 95%.

  • PDF

Some Environmental Factors Affecting Germination and Survival of Resting Spores of Plasmodioprora brassicae (배추무사마귀병균 휴면포자의 발아 및 생존에 미치는 몇가지 환경요인)

  • Kim, Choong-Hoe;Cho, Won-Dae;Kim, Hong-Mo
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.4
    • /
    • pp.66-71
    • /
    • 2000
  • Effect of temperature on resting spore germination of Plasmodioprora brassicae was indirectly estimated based on examining temporal change of number of inactive resting spores. Resting spore germination was the highest at $28^{\circ}C$ reaching 55.6% and 82.5%, 24hr and 132hr after treatment, respectively. Optimum pH for resting spore germination was pH6, following pH7 and pH8, and the germination was inhibited at pH 4, and pH9. termination of resting spores was stimulated by root extracts of radish, Chinese cabbage and kidney bean, but inhibited by that of lettuce. Number of inactive resting spores was increased as temperature increases and time prolongs after temperature treatment. However, degree of inactivation of resting spores after 1hr at $40{\sim}65^{\circ}C$ was similar with $40{\sim}60%$, but rapidly increased to 91.5% at $70^{\circ}C$. When root galls were submerged in water, density of inactive resting spores was increased rapidly and reached 60.3% 9 days after treatment. Flooding of infested soil resulted in 30% reduction of survived resting spores 5 months later. Among the two registered fungicides, fluazinam was better for inactivation of resting spores than flusulfamide, but both fungicides were inferior to phosphoric acid.

  • PDF

Survey on pesticide use by chinese cabbage growers in gangwon alpine farmland (강원도 고냉지대 배추 경작자들의 농약 사용 실태)

  • Kim, Song-Mun;Choi, Hae-Jin;Kim, Hee-Yeon;Lee, Dong-Kyung;Kim, Tae-Han;Ahn, Mun-Sub;Hur, Jang-Hyun
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.250-256
    • /
    • 2002
  • The objective was to know if chinese cabbage growers in Gangwon alpine farmland control agricultural pests including weeds effectively and use pesticide properly. Examiners visited 185 farmers at Taebaek, Pyongchang, and Jeongseon and surveyed 33 questions on pest control methods pesticide use. Chinese cabbage farmers have noxious plant diseases such as clubroot, bacterial soft rot, downy mildew, anthracnose, and mosaic disease, and also noxious insects such as diamondback moth, aphid, beet armyworm, common cabbage worm, and Japanese native slug. In addition, farmers have noxious weeds such as common chickweed, marsh pepper, hairy crabgrass, common purslane, and horseweed. To control diseases and insects, 51.3% of farmers used many chemical agents, while 20.7% of farmers used chemical agents with too much emphasis on paraquat and glyphosate to control weeds: 87.2% of the answered farmers have a preference of the both non-selective herbicides. Farmers in the survey area selected pesticides on the basis of their own experience and sales managers' recommendation (84.2%) which results in the use of inappropriate pesticides such diniconazole. Many farmers have experienced phytotoxicities (46.7%) and pesticide poisoning (51.2%). We conclude that a systematic educational program for the proper selection and use of pesticides should be conducted for chinese cabbage growers in Gangwon alpine farmland.