• Title/Summary/Keyword: Cloud essential characteristics

Search Result 29, Processing Time 0.025 seconds

Analysis of Applying the Mobile BIM Application based on Cloud Computing (클라우드 컴퓨팅 기반의 모바일 BIM 애플리케이션 적용성 분석)

  • Jun, Jin-Woo;Lee, Sang-Heon;Eom, Shin-Jo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.5
    • /
    • pp.342-352
    • /
    • 2012
  • As a futuristic construction model, building information model (BIM) based project management system (PMIS) and mobile BIM simulator apps have been showing visible sign. However, researches on the BIM based 3D simulator using mobile device are hard to find result from limitation of mobile device (slow speed at huge 3D file, display size, and etc.) and undefined standard of business processes. Therefore, this research aims at studying application of mobile BIM apps based on cloud computing. Total 8 BIM cloud apps were selected and analyzed in the 5 application feasibility characteristics (speed, view, inquiry, markup, and usability). This research would be essential phase to construct BIM based mobile project management system using cloud computing in the future.

Efficient Virtual Machine Placement Considering System Load (시스템 부하를 고려한 효율적인 가상 머신 배치)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.35-43
    • /
    • 2020
  • Cloud computing integrates computing resources such as servers, storage, and networks with virtualization technology to provide suitable services according to user needs. Due to the structural characteristics of sharing physical resources based on virtualization technology, threats to availability can occur, so it is essential to respond to availability threats in cloud computing. Existing over-provisioning method is not suitable because it can generate idle resources and cause under-provisioning to degrade or disconnect service. System resources must be allocated in real-time according to the system load to guarantee the cloud system's availability. Through appropriate management measures, it is necessary to reduce the system load and increase the performance of the system. This paper analyzes the work response time according to the allocation or migration of virtual machines and discusses an efficient resource management method considering the system load.

Performance Analysis of Cloud-Net with Cross-sensor Training Dataset for Satellite Image-based Cloud Detection

  • Kim, Mi-Jeong;Ko, Yun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.103-110
    • /
    • 2022
  • Since satellite images generally include clouds in the atmosphere, it is essential to detect or mask clouds before satellite image processing. Clouds were detected using physical characteristics of clouds in previous research. Cloud detection methods using deep learning techniques such as CNN or the modified U-Net in image segmentation field have been studied recently. Since image segmentation is the process of assigning a label to every pixel in an image, precise pixel-based dataset is required for cloud detection. Obtaining accurate training datasets is more important than a network configuration in image segmentation for cloud detection. Existing deep learning techniques used different training datasets. And test datasets were extracted from intra-dataset which were acquired by same sensor and procedure as training dataset. Different datasets make it difficult to determine which network shows a better overall performance. To verify the effectiveness of the cloud detection network such as Cloud-Net, two types of networks were trained using the cloud dataset from KOMPSAT-3 images provided by the AIHUB site and the L8-Cloud dataset from Landsat8 images which was publicly opened by a Cloud-Net author. Test data from intra-dataset of KOMPSAT-3 cloud dataset were used for validating the network. The simulation results show that the network trained with KOMPSAT-3 cloud dataset shows good performance on the network trained with L8-Cloud dataset. Because Landsat8 and KOMPSAT-3 satellite images have different GSDs, making it difficult to achieve good results from cross-sensor validation. The network could be superior for intra-dataset, but it could be inferior for cross-sensor data. It is necessary to study techniques that show good results in cross-senor validation dataset in the future.

Preliminary Analysis of Data Quality and Cloud Statistics from Ka-Band Cloud Radar (Ka-밴드 구름레이더 자료품질 및 구름통계 기초연구)

  • Ye, Bo-Young;Lee, GyuWon;Kwon, Soohyun;Lee, Ho-Woo;Ha, Jong-Chul;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.19-30
    • /
    • 2015
  • The Ka-band cloud radar (KCR) has been operated by the National Institute of Meteorological Research (NIMR) of Korea Meteorological Administration (KMA) at Boseong National Center for Intensive Observation of severe weather since 2013. Evaluation of data quality is an essential process to further analyze cloud information. In this study, we estimate the measurement error and the sampling uncertainty to evaluate data quality. By using vertically pointing data, the statistical uncertainty is obtained by calculating the standard deviation of each radar parameter. The statistical uncertainties decrease as functions of sampling number. The statistical uncertainties of horizontal and vertical reflectivities are identical (0.28 dB). On the other hand, the statistical uncertainties of Doppler velocity (spectrum width) are 2.2 times (1.6 times) larger at the vertical channel. The reflectivity calibration of KCR is also performed using X-band vertically pointing radar (VertiX) and 2-dimensional video disdrometer (2DVD). Since the monitoring of calibration values is useful to evaluate radar condition, the variation of calibration is monitored for five rain events. The average of calibration bias is 10.77 dBZ and standard deviation is 3.69 dB. Finally, the statistical characteristics of cloud properties have been investigated during two months in autumn using calibrated reflectivity. The percentage of clouds is about 26% and 16% on September to October. However, further analyses are required to derive general characteristics of autumn cloud in Korea.

A Digital Forensic Framework Design for Joined Heterogeneous Cloud Computing Environment

  • Zayyanu Umar;Deborah U. Ebem;Francis S. Bakpo;Modesta Ezema
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.207-215
    • /
    • 2024
  • Cloud computing is now used by most companies, business centres and academic institutions to embrace new computer technology. Cloud Service Providers (CSPs) are limited to certain services, missing some of the assets requested by their customers, it means that different clouds need to interconnect to share resources and interoperate between them. The clouds may be interconnected in different characteristics and systems, and the network may be vulnerable to volatility or interference. While information technology and cloud computing are also advancing to accommodate the growing worldwide application, criminals use cyberspace to perform cybercrimes. Cloud services deployment is becoming highly prone to threats and intrusions. The unauthorised access or destruction of records yields significant catastrophic losses to organisations or agencies. Human intervention and Physical devices are not enough for protection and monitoring of cloud services; therefore, there is a need for more efficient design for cyber defence that is adaptable, flexible, robust and able to detect dangerous cybercrime such as a Denial of Service (DOS) and Distributed Denial of Service (DDOS) in heterogeneous cloud computing platforms and make essential real-time decisions for forensic investigation. This paper aims to develop a framework for digital forensic for the detection of cybercrime in a joined heterogeneous cloud setup. We developed a Digital Forensics model in this paper that can function in heterogeneous joint clouds. We used Unified Modeling Language (UML) specifically activity diagram in designing the proposed framework, then for deployment, we used an architectural modelling system in developing a framework. We developed an activity diagram that can accommodate the variability and complexities of the clouds when handling inter-cloud resources.

A Study on Factors Affecting a User's Behavioral Intention to Use Cloud Service for Each Industry (클라우드 서비스의 산업별 이용의도에 미치는 영향요인에 관한 연구)

  • Kwang-Kyu Seo
    • Journal of Service Research and Studies
    • /
    • v.10 no.4
    • /
    • pp.57-70
    • /
    • 2020
  • Globally, cloud service is a core infrastructure that improves industrial productivity and accelerates innovation through convergence and integration with various industries, and it is expected to continuously expand the market size and spread to all industries. In particular, due to the global pandemic caused by COVID-19, the introduction of cloud services was an opportunity to be recognized as a core infrastructure to cope with the untact era. However, it is still at the preliminary stage for market expansion of cloud service in Korea. This paper aims to empirically analyze how cloud services can be accepted by users by each industry through extended Technology Acceptance Model(TAM), and what factors influence the acceptance and avoidance of cloud services to users. For this purpose, the impact and factors on the acceptance intention of cloud services were analyzed through the hypothesis test through the proposed extended technology acceptance model. The industrial sector selected four industrial sectors of education, finance, manufacturing and health care and derived factors by examining the parameters of TAM, key characteristics of the cloud and other factors. As a result of the empirical analysis, differences were found in the factors that influence the intention to accept cloud services for each of the four industry sectors, which means that there is a difference in perception of the introduction or use of cloud services by industry sector. Eventually it is expected that this study will not only help to understand the intention of using cloud services by industry, but also help cloud service providers expand and provide cloud services to each industry.

Development of Cloud Detection Method with Geostationary Ocean Color Imagery for Land Applications (GOCI 영상의 육상 활용을 위한 구름 탐지 기법 개발)

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.371-384
    • /
    • 2015
  • Although GOCI has potential for land surface monitoring, there have been only a few cases for land applications. It might be due to the lack of reliable land products derived from GOCI data for end-users. To use for land applications, it is often essential to provide cloud-free composite over land surfaces. In this study, we proposed a cloud detection method that was very important to make cloud-free composite of GOCI reflectance and vegetation index. Since GOCI does not have SWIR and TIR spectral bands, which are very effective to separate clouds from other land cover types, we developed a multi-temporal approach to detect cloud. The proposed cloud detection method consists of three sequential steps of spectral tests. Firstly, band 1 reflectance threshold was applied to separate confident clear pixels. In second step, thick cloud was detected by the ratio (b1/b8) of band 1 and band 8 reflectance. In third step, average of b1/b8 ratio values during three consecutive days was used to detect thin cloud having mixed spectral characteristics of both cloud and land surfaces. The proposed method provides four classes of cloudiness (thick cloud, thin cloud, probably clear, confident clear). The cloud detection method was validated by the MODIS cloud mask products obtained during the same time as the GOCI data acquisition. The percentages of cloudy and cloud-free pixels between GOCI and MODIS are about the same with less than 10% RMSE. The spatial distributions of clouds detected from the GOCI images were also similar to the MODIS cloud mask products.

An Improved Photovoltaic System Output Prediction Model under Limited Weather Information

  • Park, Sung-Won;Son, Sung-Yong;Kim, Changseob;LEE, Kwang Y.;Hwang, Hye-Mi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1874-1885
    • /
    • 2018
  • The customer side operation is getting more complex in a smart grid environment because of the adoption of renewable resources. In performing energy management planning or scheduling, it is essential to forecast non-controllable resources accurately and robustly. The PV system is one of the common renewable energy resources in customer side. Its output depends on weather and physical characteristics of the PV system. Thus, weather information is essential to predict the amount of PV system output. However, weather forecast usually does not include enough solar irradiation information. In this study, a PV system power output prediction model (PPM) under limited weather information is proposed. In the proposed model, meteorological radiation model (MRM) is used to improve cloud cover radiation model (CRM) to consider the seasonal effect of the target region. The results of the proposed model are compared to the result of the conventional CRM prediction method on the PV generation obtained from a field test site. With the PPM, root mean square error (RMSE), and mean absolute error (MAE) are improved by 23.43% and 33.76%, respectively, compared to CRM for all days; while in clear days, they are improved by 53.36% and 62.90%, respectively.

A Service Reusability-Centric Process for Developing Software-as-a-Service (서비스 재사용성 중심의 Software-as-a-Service 개발 프로세스)

  • Lee, Jung-Woo;La, Hyun-Jung;Kim, Soo-Dong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.7
    • /
    • pp.518-535
    • /
    • 2010
  • Cloud Computing is emerged as an effective reuse paradigm, where service providers operate hardware and software and as a service, and service consumers invoke the service through Internet. Software-as-a-Service (SaaS) is a type of cloud services, where the whole software is designed as a service so that several consumers can reuse the SaaS. While tradition software applications are developed for a specific organization, SaaS is developed for multiple users in the various organizations. Hence, reusability is very essential characteristic of SaaS. Reusability is defined as a metric of how effective and efficient software functionalities can be used by various users. Reusability in SaaS is evaluated by considering three sub-characteristics; applicability, adaptability, and scalability. Since such a SaaS has considerable differences and characteristics from traditional software applications, conventional methods including object-oriented modeling, component-based development method, and service-oriented architecture (SOA) service development method would be limited in developing services which can fulfill these three sub-characteristics related to reusability as well as SaaS-intrinsic characteristics. Hence, there is a great demand for effective processes for developing SaaS cloud services. In this paper, we present a practical process for developing SaaS, which focuses on ensuring reusability. And by performing a case study with our proposed SaaS development process, we evaluate applicability of our proposed process and explain how the process is used in a real domain. Then, we compare our proposed process with others for verifying our study. Through the proposed process, cloud services with high quality can be more effectively developed.

A Study on the Cloud Detection Technique of Heterogeneous Sensors Using Modified DeepLabV3+ (DeepLabV3+를 이용한 이종 센서의 구름탐지 기법 연구)

  • Kim, Mi-Jeong;Ko, Yun-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.511-521
    • /
    • 2022
  • Cloud detection and removal from satellite images is an essential process for topographic observation and analysis. Threshold-based cloud detection techniques show stable performance because they detect using the physical characteristics of clouds, but they have the disadvantage of requiring all channels' images and long computational time. Cloud detection techniques using deep learning, which have been studied recently, show short computational time and excellent performance even using only four or less channel (RGB, NIR) images. In this paper, we confirm the performance dependence of the deep learning network according to the heterogeneous learning dataset with different resolutions. The DeepLabV3+ network was improved so that channel features of cloud detection were extracted and learned with two published heterogeneous datasets and mixed data respectively. As a result of the experiment, clouds' Jaccard index was low in a network that learned with different kind of images from test images. However, clouds' Jaccard index was high in a network learned with mixed data that added some of the same kind of test data. Clouds are not structured in a shape, so reflecting channel features in learning is more effective in cloud detection than spatial features. It is necessary to learn channel features of each satellite sensors for cloud detection. Therefore, cloud detection of heterogeneous sensors with different resolutions is very dependent on the learning dataset.