DOI QR코드

DOI QR Code

Development of Cloud Detection Method with Geostationary Ocean Color Imagery for Land Applications

GOCI 영상의 육상 활용을 위한 구름 탐지 기법 개발

  • Lee, Hwa-Seon (Inha University, Department of Geoinformatic Engineering) ;
  • Lee, Kyu-Sung (Inha University, Department of Geoinformatic Engineering)
  • 이화선 (인하대학교 공간정보공학과) ;
  • 이규성 (인하대학교 공간정보공학과)
  • Received : 2015.06.18
  • Accepted : 2015.10.08
  • Published : 2015.10.31

Abstract

Although GOCI has potential for land surface monitoring, there have been only a few cases for land applications. It might be due to the lack of reliable land products derived from GOCI data for end-users. To use for land applications, it is often essential to provide cloud-free composite over land surfaces. In this study, we proposed a cloud detection method that was very important to make cloud-free composite of GOCI reflectance and vegetation index. Since GOCI does not have SWIR and TIR spectral bands, which are very effective to separate clouds from other land cover types, we developed a multi-temporal approach to detect cloud. The proposed cloud detection method consists of three sequential steps of spectral tests. Firstly, band 1 reflectance threshold was applied to separate confident clear pixels. In second step, thick cloud was detected by the ratio (b1/b8) of band 1 and band 8 reflectance. In third step, average of b1/b8 ratio values during three consecutive days was used to detect thin cloud having mixed spectral characteristics of both cloud and land surfaces. The proposed method provides four classes of cloudiness (thick cloud, thin cloud, probably clear, confident clear). The cloud detection method was validated by the MODIS cloud mask products obtained during the same time as the GOCI data acquisition. The percentages of cloudy and cloud-free pixels between GOCI and MODIS are about the same with less than 10% RMSE. The spatial distributions of clouds detected from the GOCI images were also similar to the MODIS cloud mask products.

GOCI 영상은 육상 관측에 적합한 공간해상도와 빠른 관측주기를 가지고 있지만, 현재까지 육상분야에 활용된 예가 많지 않다. GOCI 영상이 육상분야에 활용되기 위해서는 정교한 전처리가 수행되어 신뢰성을 갖춘 기본적인 산출물 형태로 제공되어야 한다. 본 연구에서는 GOCI 영상의 육상 활용을 위하여 구름의 영향이 최소화된 기본 산출물 제작에 필요한 구름 탐지 기법을 제안하였다. GOCI 영상은 구름 탐지에 효과적인 단파적외선(SWIR)과 열적외선(TIR) 밴드가 없기 때문에, 이 연구에서는 GOCI 영상의 장점인 빠른 관측 주기로 얻어지는 많은 다중시기영상을 이용하여 구름을 탐지하는 방법을 개발하였다. 제안한 구름탐지 기법은 세 단계로 구성된다. 1단계와 2단계에서는 1번 밴드 반사율과 1번과 8번 밴드의 반사율 비(b1/b8)에 임계값을 적용하여 완전 맑음(confident clear)과 두꺼운 구름(thick cloud)을 구분했다. 마지막 단계에서는 3일 동안 얻어진 b1/b8 값의 평균을 임계값으로 하여 얇은 구름(thin cloud)을 구분하였다. 이러한 순차적인 구름탐지 알고리즘을 적용하여 모두 4개의 등급으로 분류하였다. 본 연구에서 제안한 기법을 GOCI 영상에 적용 후 그 결과를 MODIS 구름 산출물(cloud mask products)과 비교 검증하였다. 여러 시기의 영상에서 추출된 구름 면적을 비교한 결과 평균제곱근오차(RMSE)가 10% 미만으로 MODIS 구름 산출물과 유사한 결과를 얻었다. 육안 분석을 통해 구름의 공간적인 분포를 비교한 결과, MODIS 산출물과 비슷한 구름 분포를 보여주었다.

Keywords

References

  1. Ackerman, S.A., K.I. Strabala, W.P. Menzel, R.A. Frey, C.C. Moeller, and L.E. Gumley, 1998. Discriminating clear sky from clouds with MODIS, Journal of Geophysical Research: Atmospheres (1984-2012), 103(D24): 32141-32157. https://doi.org/10.1029/1998JD200032
  2. Chen, P., R. Srinivasan, G. Fedosejevs, and J. Kiniry, 2003. Evaluating different NDVI composite techniques using NOAA-14 AVHRR data, International Journal of Remote Sensing, 24(17): 3403-3412. https://doi.org/10.1080/0143116021000021279
  3. de Wildt, Martijn de Ruyter, G. Seiz, and A. Gruen, 2007. Operational snow mapping using multitemporal Meteosat SEVIRI imagery, Remote Sensing of Environment, 109(1): 29-41. https://doi.org/10.1016/j.rse.2006.12.008
  4. Fensholt, R., A. Anyamba, S. Huber, S.R. Proud, C.J. Tucker, J. Small, E. Pak, M.O. Rasmussen, I. Sandholt, and C. Shisanya, 2011. Analysing the advantages of high temporal resolution geostationary MSG SEVIRI data compared to Polar Operational Environmental Satellite data for land surface monitoring in Africa, International Journal of Applied Earth Observation and Geoinformation, 13(5): 721-729. https://doi.org/10.1016/j.jag.2011.05.009
  5. Gao, B., A.F. Goetz, and W.J. Wiscombe, 1993. Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 ${\mu}$m water vapor band, Geophysical Research Letters, 20(4): 301-304. https://doi.org/10.1029/93GL00106
  6. Hagolle, O., M. Huc, D.V. Pascual, and G. Dedieu, 2010. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VEN${\mu}$S, LANDSAT and SENTINEL-2 images, Remote Sensing of Environment, 114(8): 1747-1755. https://doi.org/10.1016/j.rse.2010.03.002
  7. Han, Y., B. Kim, Y. Kim, and W.H. Lee, 2014. Automatic cloud detection for high spatial resolution multi-temporal images, Remote Sensing Letters, 5(7): 601-608. https://doi.org/10.1080/2150704X.2014.942921
  8. Holben, B.N., 1986. Characteristics of maximum-value composite images from temporal AVHRR data, International Journal of Remote Sensing, 7(11): 1417-1434. https://doi.org/10.1080/01431168608948945
  9. Justice, C.O., J. Townshend, B. Holben, and E.C. Tucker, 1985. Analysis of the phenology of global vegetation using meteorological satellite data, International Journal of Remote Sensing, 6(8): 1271-1318. https://doi.org/10.1080/01431168508948281
  10. Kriebel, K., G. Gesell, M. Kastner, and H. Mannstein, 2003. The cloud analysis tool APOLLO: improvements and validations, International Journal of Remote Sensing, 24(12): 2389-2408. https://doi.org/10.1080/01431160210163065
  11. Lee, K., S. Park, S. Kim, H. Lee, and J. Shin, 2012. Radiometric characteristics of Geostationary Ocean Color Imager (GOCI) for land applications, Korean Journal of Remote Sensing, 28(3): 277-286. https://doi.org/10.7780/kjrs.2012.28.3.277
  12. Lee, H., S. Park, and K. Lee, 2013. Generation of cloud-free composites from Geostationary Ocean Color Imager (GOCI) data for land monitoring, Proc. of International Symposium of Remote Sensing, Tokyo, Japan, May 15-17.
  13. Liu, R., and Y. Liu, 2013. Generation of new cloud masks from MODIS land surface reflectance products, Remote Sensing of Environment, 133: 21-37. https://doi.org/10.1016/j.rse.2013.01.019
  14. Lyapustin, A., Y. Wang, and R. Frey, 2008. An automatic cloud mask algorithm based on time series of MODIS measurements, Journal of Geophysical Research: Atmospheres (1984-2012), 113(D16).
  15. Nigam, R., B.K. Bhattacharya, K.R. Gunjal, N. Padmanabhan, and N. Patel, 2011. Continental scale vegetation index from Indian geostationary satellite: algorithm definition and validation, Current Science, 100: 1184-1192.
  16. Proud, S.R., R. Fensholt, L.V. Rasmussen, and I. Sandholt, 2011. Rapid response flood detection using the MSG geostationary satellite, International Journal of Applied Earth Observation and Geoinformation, 13(4): 536-544. https://doi.org/10.1016/j.jag.2011.02.002
  17. Rossow, W.B. and L.C. Garder, 1993. Cloud detection using satellite measurements of infrared and visible radiances for ISCCP, Journal of Climate, 6(12): 2341-2369. https://doi.org/10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2
  18. Ryu, J., H. Han, S. Cho, Y. Park, and Y. Ahn, 2012. Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS), Ocean Science Journal, 47(3): 223-233. https://doi.org/10.1007/s12601-012-0024-4
  19. Saunders, R.W. and K.T. Kriebel, 1988. An improved method for detecting clear sky and cloudy radiances from AVHRR data, International Journal of Remote Sensing, 9(1): 123-150. https://doi.org/10.1080/01431168808954841
  20. Stowe, L.L., P.A. Davis, and E.P. McClain, 1999. Scientific basis and initial evaluation of the CLAVR-1 global clear/cloud classification algorithm for the Advanced Very High Resolution Radiometer, Journal of Atmospheric and Oceanic Technology, 16(6): 656-681. https://doi.org/10.1175/1520-0426(1999)016<0656:SBAIEO>2.0.CO;2
  21. Yeom, J. and H. Kim, 2013. Feasibility of using Geostationary Ocean Colour Imager (GOCI) data for land applications after atmospheric correction and bidirectional reflectance distribution function modelling, International Journal of Remote Sensing, 34(20): 7329-7339. https://doi.org/10.1080/2150704X.2013.817708
  22. Zhang, X., M.A. Friedl, C.B. Schaaf, A.H. Strahler, J.C. Hodges, F. Gao, B.C. Reed, and A. Huete, 2003. Monitoring vegetation phenology using MODIS, Remote Sensing of Environment, 84(3): 471-475. https://doi.org/10.1016/S0034-4257(02)00135-9
  23. Zhu, Z. and C.E. Woodcock, 2014. Automated cloud, cloud shadow, and snow detection in multitemporal Landsat data: An algorithm designed specifically for monitoring land cover change, Remote Sensing of Environment, 152: 217-234. https://doi.org/10.1016/j.rse.2014.06.012

Cited by

  1. Improvement of Temporal Resolution for Land Surface Monitoring by the Geostationary Ocean Color Imager Data vol.32, pp.1, 2016, https://doi.org/10.7780/kjrs.2016.32.1.3
  2. Geometric Correction for the Geostationary Ocean Color Imager from a Combination of Shoreline Matching and Frequency Matching vol.18, pp.11, 2018, https://doi.org/10.3390/s18113599
  3. 재난 모니터링을 위한 Landsat 8호 영상의 구름 탐지 및 복원 연구 vol.35, pp.5, 2015, https://doi.org/10.7780/kjrs.2019.35.5.2.10
  4. Landsat 8호 영상 복원을 위한 SSG 기법 활용성 평가 vol.36, pp.5, 2015, https://doi.org/10.7780/kjrs.2020.36.5.4.8
  5. 동아시아 지역의 위성 구름탐지 산출물 상호 비교를 통한 품질 평가 vol.37, pp.6, 2015, https://doi.org/10.7780/kjrs.2021.37.6.2.5