• Title/Summary/Keyword: Cloud Temperature

Search Result 370, Processing Time 0.027 seconds

Numerical Simulations of the local circulation in coastal area using Four-Dimensional Data Assimilation Technique (4차원 자료동화 기법을 이용한 해안가 대기 순환의 수치 실험)

  • Kim, Cheol-Hee;Song, Chang-Keun
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.2
    • /
    • pp.79-91
    • /
    • 2002
  • Four dimensional data assimilation (FDDA) technique was considered for 3 dimensional wind field in coastal area and a set of 3 numerical experiments including control experiments has been tested for the case of the synoptic weather pattern of the weak northerly geostrophic wind with the cloud amount of less than 5/10 in autumn. A three dimensional land and sea breeze model with the sea surface temperature (SST) of 290K was performed without nudging the observed wind field and surface temperature of AWS (Automatic Weather System) for the control experiment. The results of the control experiment showed that the horizontal temperature gradient across the coastline was weakly simulated so that the strength of the sea breeze in the model was much weaker than that of observed one. The experiment with only observed horizontal wind field showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated. However, the horizontal wind speed and vertical motion in the convergence zone were weakly simulated. The experiment with nudgings of both the surface temperature and wind speed showed that both the pattern of local change of wind direction and the times of starting and ending of the land-sea breeze were fairly well simulated even though the ending time of the sea breeze was delayed due to oversimulated temperature gradient along the shoreline.

RETRIEVAL OF LOCAL INTERPLANETARY DUST EMISSIVITY BY ASTRO-F

  • HONG S. S.;KWON S. M.;PYO J.;UENO M.;ISHIGURO M.;USUI F.;WEINBERG J. L.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.159-169
    • /
    • 2004
  • This is a proposal to probe local part of the interplanetary dust (IPD) cloud complex and retrieve mean volume emissivity of the local IPDs at mid-infrared wavelengths. This will be done by monitoring, with Infrared Camera (IRC) aboard the ASTRO-F, the annual modulation of the zodiacal emission. In pointing mode of the ASTRO-F mission the spacecraft can make attitude maneuvering over approximately ${\pm}1^{\circ}$ range centered at solar elongation $90^{\circ}$ in the ecliptic plane. The attitude maneuvering combined with high sensitivity of the IRC will provide us with a unique opportunity observationally to take derivatives of the zodiacal emission brightness with respect to the solar elongation. From the resulting differential of the brightness over the ${\pm}1^{\circ}$ range, one can directly determine the mean volume emissivity of the local IPDs with a sufficient accuracy to de-modulate the annual emissivity variations due to the Earth's elliptical motion and the dis-alignment of the maximum IPD density plane with respect to the ecliptic. The non-zero eccentricity ($e_{\oplus}$= 0.0167) of the Earth's orbit combined with the sensitive temperature dependence of the Planck function would bring modulations of amplitude at least $3.34\%$ to the zodiacal emission brightness at mid-infrared wavelengths, with which one may determine the IPD temperature T(r) and mean number density n(r) as functions of heliocentric distance r. This will in turn fix the power-law exponent $\delta$ in the relation $T(r) = T_o(r/r_o)^{-\delta}$ for the dust temperature and v in $n(r) = n_o(r/r_o)^-v$ for the density. We discuss how one may de-couple the notorious degeneracy of cross-section, density, reference temperature $T_o$ and exponent $\delta$.

Observations of Solar Filaments with Fast Imaging Solar Spectrograph of the 1.6 meter New Solar Telescope at Big Bear Solar Observatory

  • Song, Dong-Uk;Park, Hyung-Min;Chae, Jong-Chul;Yang, Hee-Su;Park, Young-Deuk;Nah, Ja-Kyoung;Cho, Kyung-Suk;Jang, Bi-Ho;Ahn, Kwang-Su;Cao, Wenda;Goode, Philip R.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.88.2-88.2
    • /
    • 2011
  • Fast Imaging Solar Spectrograph (FISS) is an instrument developed by Seoul National University and Korea Astronomy and Space Science Institute and installed at the 1.6 meter New Solar Telescope of Big Bear Solar Observatory. Using this instrument, we observed solar filaments and analyzed the data focusing on determining the temperature and non-thermal velocity. We inferred the Doppler absorption widths of $H{\alpha}$ and Ca II 8542$\bar{A}$ lines from the line profiles using the cloud model. From these values, we separately determined temperature and non-thermal velocity. Our first result came from a solar filament observed on 2010 July 29th. Temperature inside a small selected region of this ranges from 4500K to 12000K and non-thermal velocity, from 3.5km/s to 7km/s. We also found temperature varied a lot with time. For example temperature at a fixed point varied from 8000K to 18000K for 40 minutes, displaying an oscillating pattern with a period of about 8 minutes and amplitude of about 2000K. We will also present new results from filaments observed in 2011 summer.

  • PDF

Sounding Observation with Wind Profiler and Radiometer of the Yeongdong Thundersnow on 20 January 2017 (2017년 1월 20일 영동 뇌설 사례에 대한 연직바람관측장비와 라디오미터 관측 자료의 분석)

  • Kwon, Ju-Hyeong;Kwon, Tae-Yong;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.465-480
    • /
    • 2018
  • On 20 January 2017, the fresh snow cover which is more than 20 cm, accompaning with lightning occurred over Yeongdong coastal region for the first 3-hour of the heavy snowfall event. This study analyzed sounding observations in the heavy snow period which were including the measurements of wind profiler, radiometer and rawinsonde. The features examined from the vertical wind and temperature data at the two adjacent stations, Bukgangneung and Gangneung-Wonju National University, are summarized as follows: 1) The strong (30-40 kts) north-east winds were observed in the level from 2 to 6 km. The Strong atmospheric instability was found from 4 to 6 km, in which the lapse rate of temperature was about $-18^{\circ}C\;km^{-1}$. These features indicate that the deep convective cloud develops up to the height of 6 km in the heavy snowfall period, which is shown in the satellite infrared images. 2) The cooling was observed in the level below 1 km. At this time, the surface air temperature at Bukgangneung station decreased by $4^{\circ}C$. The narrow cooling zone estimated from AWS and buoy data was located in east-west direction. These are the features observed in the cold front of extratropical cyclone. The distributions of radar echo and lightning also show the same shape in east-west direction. Therefore, the results indicate that the Yeongdong thundersnow event was the combined precipitation system of deep convective cloud and cold frontal precipitation.

Direct Observation of Radiative Flux in the Southern Yellow Sea

  • Lu, Lian-Gang;Yu, Fei;Diao, Xinyuan;Guo, Jingsong;Wang, Huiwu;Wei, Chuanjie
    • Ocean Science Journal
    • /
    • v.43 no.2
    • /
    • pp.115-126
    • /
    • 2008
  • Direct measurements of four radiative components at air-sea boundary layer were conducted in the southern Yellow Sea during three cruises (seasons) in 2007. Simultaneous observations of meteorological (cloud cover, air temperature and humidity) and oceanographic (sea surface temperature) parameters were carried out. Observational results of radiative fluxes and meteorological and oceanographic parameters are presented. Mean diurnal cycles of four radiative components, net radiation, and sea surface albedo are calculated to achieve averages in different seasons. Net radiative fluxes in three seasons (winter, spring, autumn) are 8, 146, $60\;W/m^2$, respectively. Comparisons between the observed radiative fluxes and those estimated with formulas are taken.

An Analysis of Climatic Elements around the Pohang area (포항지역의 기후요소별 분석)

  • Jung, Woo-Sik;Kim, Hyun-Goo;Lee, Soon-Hwan;Lee, Hwa-Woon
    • Journal of the Korean earth science society
    • /
    • v.24 no.5
    • /
    • pp.449-455
    • /
    • 2003
  • Climatic elements were investigated in order to understand the atmospheric environment around the Pohang area and for use as basic information in prediction. In this analysis, we could find that the annual mean temperature, relative humidity, and precipitation are 14.39$^{\circ}C$, 63.3%, and 1.178mm, respectively. The prevailing wind direction was southwestern, and the mean wind speed is 2.7m/s. The amount of cloud was abundant during the summer because of the Jang-ma phenomenon and convective clouds induced by terrain effect. The annual mean duration of sunshine represented about 2,221 hours.

AKARI near-infrared spectral observations on the shocked H2 gas of a supernova remnant IC 443

  • Shinn, Jong-Ho;Koo, Bon-Chul;Seon, Kwang-Il;Lee, Ho-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.69.1-69.1
    • /
    • 2010
  • IC 443 is famous for its interaction with nearby molecular clouds and intense H2 emission lines in infrared. Therefore, it has been studied extensively for the understanding of molecular shocks. We observed H2 mission lines toward the shock-cloud interaction regions of IC 443, known as clumps B, C, and G. The observations were performed with the InfraRed Camera (IRC) onboard a satellite AKARI over 2.5-5.0 um, where previous space observations, e.g. Infrared Space Observatory (ISO) and Spitzer, do not cover. Our AKARI observations provide spectra of sequential pure-rotational and ro-vibrational H2 emission lines. For the clumps C and G, combining with previous mid-infrared observational results, we found that the H2 level populations show a significant separation between v=0 and v=1 levels; v=1 levels are under-populated than v=0 levels, therefore, the population cannot be described by two temperature LTE model, as many people have analyzed for the shocked H2 gas. We also applied the thermal admixture model, dN(H2; T)~T^(-b) dT, with varying ortho-to-para ratios according to the temperature, to describe the level population, and obtained plausible ranges of the H2 gas density and power-law index b.

  • PDF

On the Prediction and Variation of Air Pollutants Concentration in Relation to the Meteorological Condition in Pusan Area (기상조건에 따른 부산지역 대기오염물질 농도변화와 예측에 관한 연구)

  • 정영진;이동인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.3
    • /
    • pp.177-190
    • /
    • 1998
  • The concentrations of air pollutants In large cities such as Pusan area have been increased every year due to the increasing of fuels consumption at factories and by vehicles as well as the gravitation of the population. In addition to the pollution sources, time and spatial variation of air pollutants concentration and meteorological factors have a great influence on the air pollution problem. Especially , its concentration is governed by wind direction, wind speed, precipitation, solar radiation, temperature, humidity and cloud amounts, etc. In this study, we have analyzed various data of meteorological factors using typical patterns of the air pressure to investigate how the concentration of air pollutants is varied with meteorological condition. Using the relationship between meteorological factors (air temperature, relative humidity, wind speed and solar radiation) and the concentration of air pollutants (SO2, O3) , experimental prediction formulas for their concentration were obtained. Therefore, these prediction formulas at each meteorological factor in a pressure pattern may be roughly used to predict the air pollutants concentration and contributed to estimate the variation of its value according to the weather condition in Pusan city.

  • PDF

Effect of Added Pluronics on fabrication of Poly(L-lactic acid) Scaffold via Thermally-Induced Phase Separation (상 분리법을 이용한 Poly(L-lactic acid) Scaffold제조에 미치는 Pluronics의 영향)

  • 김고은;김현도;이두성
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.821-828
    • /
    • 2002
  • Regular and highly interconnected macroporous poly(L-lactic acid) (PLLA) scaffolds with pore size of 10∼300 ㎛ were fabricated through thermally induced phase separation of a PLLA-dioxane-water ternary system in the presence of a small amount of Pluronics. Addition of Pluronics to the ternary system raised the cloud-point temperature curve in the order of P-123< F-68< F-127. The Pluronics act as nuclei for the phase separation. This assistance is enhanced with increasing length of the hydrophilic PEO blocks in the Pluronics molecules. Liquid-liquid spinodal phase separation was induced at higher temperatures in the systems containing Pluronics because the spinodal region is raised to higher temperature. The absorption of Pluronics onto the interface stabilizes a macro scale structure and increases the interconnection of pores.

A SEARCH FOR MOLECULAR CLOUDS AT HIGH GALACTIC LATITUDE

  • Chi Seung-Youp;Park Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.19-24
    • /
    • 2006
  • We carried out CO survey toward IR-excess clouds using SRAO 6-m telescope in search of molecular $H_2$. These clouds, which show far-infrared excess over what is expected from HI column density, are considered to be candidates of molecular clouds. In order to find new high Galactic latitude clouds, we made mapping observations for 14 IR-excess clouds selected from Reach et al.(1998) in $^{12}CO$ J = 1 - 0 line, supplementing the similar survey in southern hemisphere (Onishi et al. 2001). $^{12}CO$ emission is detected from three IR-excess clouds among 14 objects. Three newly detected clouds exhibit somewhat clumpy morphology and column densities amount to ${\sim}10^{21}\;cm^{-2}$. One of three clouds, DIR120-28, show discrepancy between IR-excess center and CO emission center. It seems that IR-excess may not be an effective tracer of molecular gas. Instead, optical depth$(\tau)$ excess, i.e., IR-excess corrected for temperature dependence, may be more effective tracer of molecular clouds, since, by combining statistics from both hemispheres, we found that the detection rate is higher for IR-excess clouds with lower dust temperature.