Browse > Article

Effect of Added Pluronics on fabrication of Poly(L-lactic acid) Scaffold via Thermally-Induced Phase Separation  

김고은 (기능성 고분자 신소재 연구센터, 성균관대학교 고분자공학과)
김현도 (기능성 고분자 신소재 연구센터, 성균관대학교 고분자공학과)
이두성 (기능성 고분자 신소재 연구센터, 성균관대학교 고분자공학과)
Publication Information
Polymer(Korea) / v.26, no.6, 2002 , pp. 821-828 More about this Journal
Abstract
Regular and highly interconnected macroporous poly(L-lactic acid) (PLLA) scaffolds with pore size of 10∼300 ㎛ were fabricated through thermally induced phase separation of a PLLA-dioxane-water ternary system in the presence of a small amount of Pluronics. Addition of Pluronics to the ternary system raised the cloud-point temperature curve in the order of P-123< F-68< F-127. The Pluronics act as nuclei for the phase separation. This assistance is enhanced with increasing length of the hydrophilic PEO blocks in the Pluronics molecules. Liquid-liquid spinodal phase separation was induced at higher temperatures in the systems containing Pluronics because the spinodal region is raised to higher temperature. The absorption of Pluronics onto the interface stabilizes a macro scale structure and increases the interconnection of pores.
Keywords
highly interconnection; Pluronics; PLLA-dioxane-water; PEO block; spinodal region;
Citations & Related Records

Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 /
[ James J. Yoo;I. W. Lee;B. J. Choi(ed.) ] / Tissue Engineering: Concepts and applications
2 /
[ P. van de Witte;P. J. Dijkstra;J. W. A. van den Berg;J. Feijen ] / J. Mem. Sci.   DOI   ScienceOn
3 /
[ Vaughn M. Nace ] / Nonionic Surfactants
4 /
[ K. Whang;C. H. Thomas;K. E. Healy;G. Nuber ] / Polymer   DOI   ScienceOn
5 /
[ Y. S. Nam;T. G. Park ] / J. Biomed. Mater. Res.   DOI   ScienceOn
6 /
[ T. Kawakatsu;K. Kawasaki;M. Furusaka;H. Okabayashi;T. Kanaya ] / J. Chem. Phys.   DOI   ScienceOn
7 /
[ O. Olabisi;L. M. Robeson;M. T. Shaw ] / Polymer-Polymer Misibility
8 /
[ H. Suh ] / Polymer Sience and Technology
9 /
[ T. Kawakatsu;K. Kawasaki;M. Furusaka;H. Okabayashi;T. Kanaya ] / J. Chem. Phys.   DOI   ScienceOn
10 /
[ F. J. Hua;J. D. Nam;D. S. Lee ] / Macromol. Rapid Commun.   DOI   ScienceOn
11 /
[ J. S. Kang;J. H. Jeon;J. C. Cho;H. B. Lee ] / Polymer(Korea)
12 /
[ A. Anthony;D. J. Mooney;J. P. vacanti;R. Langer ] / Synthetic Biodegradable Polymer Scaffold
13 /
[ A. G. Mikos;A. J. Thorsen;L. A. Czerwonka;Y. Bao;R. Langer;D. N. Winslow;J. P. Vacanti ] / Polymer   DOI   ScienceOn
14 /
[ F. J. Hua;G. E. Kim;D. S. Lee ] / J. Biomed. Mater. Res.   DOI   ScienceOn
15 /
[ D. J. Mooney;D. F. Baldwin;N. P. Suh;J. P. Vacanti;R. Langer ] / Biomaterials   DOI   ScienceOn
16 /
[ C. A. Vacanti;J. P. Vacanti;R. L. Tawes(ed.) ] / Function Organ Replacement: The New Technology of Tissue Engineering
17 /
[ P. V. Witte;P. J. Dijikstra;J. W. Ven;D. Berg;J. Feijen ] / J. Polym. Sci.   DOI
18 /
[ A. G. Mikos;G. Sarakinos;S. M. Leite;J. P. Vacanti;R. Langer ] / Biomaterials   DOI   ScienceOn
19 /
[ C. Schugens;V. Maquet;C. Grandfils;R. Jerome;P. Teyssie ] / J. Biomed. Mater. Res.   DOI
20 /
[ C. Schugens;V. Maquet;C. Grandfils;R. Jerome;P. Teyssie ] / Polymer   DOI   ScienceOn
21 /
[ Y. S. Nam;T. G. Park ] / Biomaterials   DOI   ScienceOn