Browse > Article
http://dx.doi.org/10.5303/JKAS.2004.37.4.159

RETRIEVAL OF LOCAL INTERPLANETARY DUST EMISSIVITY BY ASTRO-F  

HONG S. S. (Astronomy Program, SEES, Seoul National University, Department of IR Astrophysics, ISAS/JAXA)
KWON S. M. (Department of Science Education, Kangwon National University)
PYO J. (Astronomy Program, SEES, Seoul National University)
UENO M. (Graduate School of Astronomy and Earth Sciences, University of Tokyo)
ISHIGURO M. (Institute for Astronomy, University of Hawaii)
USUI F. (Department of IR Astrophysics, ISAS/JAXA)
WEINBERG J. L. (Space Astronomy Lab)
Publication Information
Journal of The Korean Astronomical Society / v.37, no.4, 2004 , pp. 159-169 More about this Journal
Abstract
This is a proposal to probe local part of the interplanetary dust (IPD) cloud complex and retrieve mean volume emissivity of the local IPDs at mid-infrared wavelengths. This will be done by monitoring, with Infrared Camera (IRC) aboard the ASTRO-F, the annual modulation of the zodiacal emission. In pointing mode of the ASTRO-F mission the spacecraft can make attitude maneuvering over approximately ${\pm}1^{\circ}$ range centered at solar elongation $90^{\circ}$ in the ecliptic plane. The attitude maneuvering combined with high sensitivity of the IRC will provide us with a unique opportunity observationally to take derivatives of the zodiacal emission brightness with respect to the solar elongation. From the resulting differential of the brightness over the ${\pm}1^{\circ}$ range, one can directly determine the mean volume emissivity of the local IPDs with a sufficient accuracy to de-modulate the annual emissivity variations due to the Earth's elliptical motion and the dis-alignment of the maximum IPD density plane with respect to the ecliptic. The non-zero eccentricity ($e_{\oplus}$= 0.0167) of the Earth's orbit combined with the sensitive temperature dependence of the Planck function would bring modulations of amplitude at least $3.34\%$ to the zodiacal emission brightness at mid-infrared wavelengths, with which one may determine the IPD temperature T(r) and mean number density n(r) as functions of heliocentric distance r. This will in turn fix the power-law exponent $\delta$ in the relation $T(r) = T_o(r/r_o)^{-\delta}$ for the dust temperature and v in $n(r) = n_o(r/r_o)^-v$ for the density. We discuss how one may de-couple the notorious degeneracy of cross-section, density, reference temperature $T_o$ and exponent $\delta$.
Keywords
zodiacal emission; interplanetary dusts; IR emissivity; density-temperature degeneracy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ishiguro, M., Nakamura, R., Fujii, Y., Mohshige, K., Yano, H., Yasuda, H., Yokogawa, S., & Mukai, T. 1999, First detection of visible zodiacal dust bands from ground-based observations, ApJ, 511, 432   DOI   ScienceOn
2 Dumont, R. 1965, S$\`{e}$paration des composantes atmo-sph$\`{e}$riques et interplan$\`{e}$taire et stellaire du ciel noc-turne $\`{a}$ 5000$\AA$. Applications $\`{a}$ la photom$\`{e}$trie de la lumi$\`{e}$re zodiacale et du Gegenschein, Annales d'Astrophysique, 28, 265
3 Dumont, R. 1973, Phase Function and Polarization Curve of Interplanetary Scatterers from Zodiacal Light Photopolarimetry, Planetary & Space Science, 21, 2155
4 Davies, J. K., Green, S. F., Stewart, B. C., Meadows, A. J., & Aumann, H. H. 1984, The IRAS fast-moving object search, Nature, 309, 315   DOI   ScienceOn
5 Dermott, S. F., Nicholson, P. A., Burns, J. A., & Houck, J. R. 1984, Origin of the solar system dust bands discovered by IRAS, Nature, 312, 505   DOI
6 Dermott, S. F., Nicholson, P. D., Burns, J. A., & Houck, J. R. 1985, An analysis of IRAS' solar sys-tem dust bands, in Properties and Interactions of Interplanetary Dust, ed. by R. H. Giese, P. Lamy, (D. ReidehDordrecht), p.395
7 Dermott, S. F., Jayaraman, S., Xu, Y. L., Gustafson, B. A. S., & Liou, J. C. 1994, A circumsolar ring of asteroidal dust in resonant lock with the Earth, Nature, 369, 719   DOI   ScienceOn
8 Reach, W. T., Franz, B. A., Weiland, J. L., Hauser, M. G., Kelsall, T. N., Wright, E. L., Rawley, G., Stemwedel, S. W., & Spiesman, W. J. 1995, Observational Confirmation of a Circumsolar Dust Ring by the COBE Satellite, Natur., 374, 521   DOI   ScienceOn
9 Sykes, M. V. 1988, IRAS observations of extended zodiacal structures, ApJ, 334, L55   DOI
10 Sykes, M. V., & Walker, R. G. 1992, Cometary dust trails, I - SurveyIcarus, 95, 180
11 Tanabe, H. 1963, Zodiacal Light and Airglow Components at 5300$\AA$, PASJ, 16, 324
12 Weinberg, J. L. 1963, Photoelectric Polarimetry of the Zodiacal Light at Lambda 5300, Ph. D. Thesis, Universify of Colorado
13 Werner, M., et al. 2003, The Spitzer Space Telescope Mission, ApJS, 154, 1   DOI   ScienceOn
14 Kwon, S. M., Hong, S. S., & Weinberg, J. L. 2004, An observational model of the zodiacal light brightness distribution, NewA., 10, 91   DOI   ScienceOn
15 Jayaraman, S., Grogan, K., Reach, W., Stansberry, J., & Werner, M. 2003, Proposed Observations of Earth's Resonant Ring and Zodiacal Cloud with SIRTF, American Astronomical Society, DPS meeting #35, #38.32
16 Kelsall, T., Weiland, J. L., Franz, B. A., Reach, W. T., Arendt, R. G., Dwek, E., Freudenreich, H. T., Hauser, M. G., Moseley, S. H., Odegard, N. P., Silverberg, R. F., & Wright, E. L. 1998, The COBE diffuse infrared background experiment search for the cosmic infrared background. II. Model of the iInterplanetary dust cloud, ApJ, 508, 44   DOI   ScienceOn
17 Kwon, S. M. & Hong, S. S. 1998, Three-dimensional infrared models of the interplanetary dust distribu-tion, EP&S, 50, 501
18 Kwon, S. M., Hong, S. S. & Shin, K. J. 2004, Devel-opment of Wide-field Imaging Camera for Zodiacal Light Observation(WICZO), submitted to JKAS
19 Levasseur-Regourd, A. C. & Dumont, R. 1980, Ab solute photometry of zodiacal light, A&A, 84, 277
20 Low, F. J., Young, E., Beintema, D. A., Gautier, T. N., Beichman, C. A., Aumann, H. H., Gillett, F. C., Neugebauer,G., Boggess, N., & Emerson, J. P. 1984 Infrared cirrus - New components of the extended infrared emission, ApJ, 278, L19-L22   DOI
21 Reach, W. T. 1991, Zodiacal emission. II - Dust near ecliptic, ApJ, 369, 529   DOI
22 Ishiguro, M., Watanabe, J., Usui, F., Tanigawa, T., Kinoshita, D., Suzuki, J., Nakamura, R., Ueno, M., & Mukai, T. 2002a, First Detection of an Optical Dust Trail along the Orbit of 22P/Kopff, ApJ, 572, L117   DOI   ScienceOn
23 Ishiguro, M., Mukai, T., Nakamura, R., Usui, F., & Ueno, M. 2002b, WIZARD: New Observation system of zodiacal light in Kobe University, in Dust in the Solar System and Other Ptanetary Systems, COSPAR COLLOQUIUM SERIES Volume 15, ed. by S.F. Green, I.P. Williams, J.A.M. McDonnell and N. McBride (Amsterdam:Pergamon), p. 98
24 Ishiguro, M., Kwon, S. M., Sarugaku, Y., Hasegawa, S., Usui, F., Nishiura, S., Hakada, Y., & Yano, H. 2003, Discovery of the dust trail of the Stardust comet sample return mission target: 81P/Wi1d 2, ApJ, 589, L101   DOI   ScienceOn
25 Hong, S. S. 1985, Henyey-Greenstein Representation of the Mean Volume Scattering Phase Function for Zodiacal Dust, A&AP, 146, 67
26 Dumont, R. 1975, On the gradient of zodiacal light with heliocentric distance, Planetary & Space Science, 23, 1235   DOI   ScienceOn
27 Dumont, R., Renard, J. B., Levasseur-Regourd, A. C. & Weinberg, J. L. 1998, Disentangling the main populations of the zodiacal cloud from zodiacal light observations, EP&S, 50, 473