Direct Observation of Radiative Flux in the Southern Yellow Sea

  • Lu, Lian-Gang (Laboratory of Marine Science and Numerical Modeling, the First Institute of Oceanography, State Oceanic Administration) ;
  • Yu, Fei (Laboratory of Marine Science and Numerical Modeling, the First Institute of Oceanography, State Oceanic Administration) ;
  • Diao, Xinyuan (Laboratory of Marine Science and Numerical Modeling, the First Institute of Oceanography, State Oceanic Administration) ;
  • Guo, Jingsong (Laboratory of Marine Science and Numerical Modeling, the First Institute of Oceanography, State Oceanic Administration) ;
  • Wang, Huiwu (Laboratory of Marine Science and Numerical Modeling, the First Institute of Oceanography, State Oceanic Administration) ;
  • Wei, Chuanjie (Laboratory of Marine Science and Numerical Modeling, the First Institute of Oceanography, State Oceanic Administration)
  • Published : 2008.06.30

Abstract

Direct measurements of four radiative components at air-sea boundary layer were conducted in the southern Yellow Sea during three cruises (seasons) in 2007. Simultaneous observations of meteorological (cloud cover, air temperature and humidity) and oceanographic (sea surface temperature) parameters were carried out. Observational results of radiative fluxes and meteorological and oceanographic parameters are presented. Mean diurnal cycles of four radiative components, net radiation, and sea surface albedo are calculated to achieve averages in different seasons. Net radiative fluxes in three seasons (winter, spring, autumn) are 8, 146, $60\;W/m^2$, respectively. Comparisons between the observed radiative fluxes and those estimated with formulas are taken.

Keywords

References

  1. Bignami, F., S. Marullo, R. Santoleri, and M.E. Schiano. 1995. Longwave radiation budget in the Mediterranean Sea. J. Geophys. Res., 100, 2501-2514 https://doi.org/10.1029/94JC02496
  2. Bunker, A.F. 1976. Computations of surface energy flux and annual air-sea interaction cycles of the North Atlantic Ocean. Mon. Wea. Rev., 104(9), 1122-1140 https://doi.org/10.1175/1520-0493(1976)104<1122:COSEFA>2.0.CO;2
  3. Byun, D.-S. and Y.-K. Cho. 2006. Estimation of the PAR irradiance ratio and its variability under clear-sky conditions at Ieodo in the East China Sea. Ocean Sci. J., 41(4), 235-244 https://doi.org/10.1007/BF03020627
  4. Byun, D.-S. and N. Pinardi. 2007. Comparison of marine insolation estimating methods in the Adriatic Sea. Ocean Sci. J., 42(4), 211-222 https://doi.org/10.1007/BF03020912
  5. Clark, N.E., L. Eber, R.M. Laurs, J.A. Renner, and J.F.T. Saur. 1974. Heat exchange between ocean and atmosphere in the eastern North Pacific for 1961-71. NOAA Tech. Rep. NMFS SSRF-682, U.S. Dep. Commer., Washington, D.C
  6. Chu, P., Y. Chen, and A. Kuninaka. 2005. Seasonal variability of the Yellow Sea/East China Sea surface fluxes and thermohaline structure. Adv. Atmos. Sci., 22(1), 1-20 https://doi.org/10.1007/BF02930865
  7. Dobson, F.W. and S.D. Smith. 1988. Bulk models of solar radiation at sea. Quart. J. R. Met. Soc., 114, 165-182 https://doi.org/10.1002/qj.49711447909
  8. Fairall, C.W., P.O.G. Persson, E.F. Bradley, R.E. Payne, and S.P. Anderson. 1998. A new look at calibration and use of Eppley precision infrared radiometers Part I: theory and application. J. Atmos. Ocean. Tech., 15, 1230-1243
  9. Hirose, N., H.-C. Lee, and J.-H. Yoon. 1999. Surface heat flux in the East China Sea and the Yellow Sea. J. Phys. Oceanogr., 29(3), 401-417 https://doi.org/10.1175/1520-0485(1999)029<0401:SHFITE>2.0.CO;2
  10. Jiang, G., W. Sha, J. Yan, X. Li, Y. Xiao, H. Yao, J. Li, and Z. Lu. 2002. The analysis of the radiation features before and after South China Sea monsoon onset. J. Tropi. Mete., 18, 29-37
  11. osey, S.A., D. Oakley, and R.W. Pascal. 1997. On estimating the atmospheric longwave flux at the ocean surface from ship meteorological reports. J. Geophys. Res., 102, 27961-27972 https://doi.org/10.1029/97JC02420
  12. Josey, S. A., R.W. Pascal, P.K. Taylor, and M.J. Yelland. 2003. A new formula for determining the atmospheric longwave flux at the ocean surface at mid-high latitudes. J. Geophys. Res., 108, DOI 10.1029/2002JC001418
  13. Kantha, L.H. and C.A. Clayson. 2000. Small-scale processes in geophysical fluid flows. Academic Press, New York. 888 p
  14. Lumb, F.E. 1964. The influence of cloud on hourly amounts of total solar radiation at the sea surface. Quart. J. R. Met. Soc., 90, 43-56 https://doi.org/10.1002/qj.49709038305
  15. Pascal, R.W. and S.A. Josey. 2000. Accurate radiometric measurement of the atmospheric longwave flux at the sea surface, J. Atmos. Ocean. Tech., 17, 1271-1282 https://doi.org/10.1175/1520-0426(2000)017<1271:ARMOTA>2.0.CO;2
  16. Payne, R.E. 1972. Albedo of the sea surface. J. Atmos. Sci., 29, 959-970 https://doi.org/10.1175/1520-0469(1972)029<0959:AOTSS>2.0.CO;2
  17. Peixoto, J.P. and A.H. Oort. 1992. Physics of climate. Springer- Verlag, New York. 520 p
  18. Reed, R.K. 1977. On estimating insolation over the ocean. J. Phys. Oceanogr., 7, 482-485 https://doi.org/10.1175/1520-0485(1977)007<0482:OEIOTO>2.0.CO;2
  19. Reed, R.K. and D. Halpern. 1975. Insolation and net longwave radiation off the Oregon Coast. J. Geophys. Res., 80, 839-844 https://doi.org/10.1029/JC080i006p00839
  20. Schiano, M.E., R. Santoleri, F. Bignami, R.M. Leonardi, S. Marullo, and E. Bohm. 1993. Air-sea interaction measurements in the west Mediterranean Sea during the Thyrrhenian Eddy Multi-Platform observations experiment. J. Geophys. Res., 98, 2461-2474 https://doi.org/10.1029/92JC02121
  21. Shine, K.P. 1984. Parameterization of the shortwave flux over high albedo surfaces as a function of cloud thickness and surface albedo. Quart. J. R. Met. Soc., 110, 747-764 https://doi.org/10.1002/qj.49711046511
  22. Simpson, J.J. and C.A. Paulson. 1979. Mid-ocean observations of atmospheric radiation. Quart. J. R. Met. Soc., 105, 487- 502 https://doi.org/10.1002/qj.49710544412
  23. Spencer, J.W. 1971. Fourier series representation of the position of the Sun. Search, 2(5), 172
  24. Zhang, D. and R.A. Anthes. 1982. A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons with SESAME-79 data. J. Appl. Meteor., 21, 1594-1609 https://doi.org/10.1175/1520-0450(1982)021<1594:AHRMOT>2.0.CO;2