• 제목/요약/키워드: Closed-loop-Control System

검색결과 1,090건 처리시간 0.028초

AR Marker Detection Technique-Based Autonomous Attitude Control for a non-GPS Aided Quadcopter

  • Yeonwoo LEE;Sun-Kyoung KANG
    • 한국인공지능학회지
    • /
    • 제12권3호
    • /
    • pp.9-15
    • /
    • 2024
  • This paper addresses the critical need for quadcopters in GPS-denied indoor environments by proposing a novel attitude control mechanism that enables autonomous navigation without external guidance. Utilizing AR marker detection integrated with a dual PID controller algorithm, this system ensures accurate maneuvering and positioning of the quadcopter by compensating for the absence of GPS, a common limitation in indoor settings. This capability is paramount in environments where traditional navigation aids are ineffective, necessitating the use of quadcopters equipped with advanced sensors and control systems. The actual position and location of the quadcopter is achieved by AR marker detection technique with the image processing system. Moreover, in order to enhance the reliability of the attitude PID control, the dual closed loop control feedback PID control with dual update periods is suggested. With AR marker detection technique and autonomous attitude control, the proposed quadcopter system decreases the need of additional sensor and manual manipulation. The experimental results are demonstrated that the quadrotor's autonomous attitude control and operation with the dual closed loop control feedback PID controller with hierarchical (inner-loop and outer-loop) command update period is successfully performed under the non-GPS aided indoor environment and it enhanced the reliability of the attitude and the position PID controllers within 17 seconds. Therefore, it is concluded that the proposed attitude control mechanism is very suitable to GPS-denied indoor environments, which enables a quadcopter to autonomously navigate and hover without external guidance or control.

Generalized predictive control based on the parametrization of two-degree-of-freedom control systems

  • Naganawa, Akihiro;Obinata, Goro;Inooka, Hikaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.1-4
    • /
    • 1995
  • We propose a new design method for a generalized predictive control (GPC) system based on the parametrization of two-degree-of freedom control systems. The objective is to design the GPC system which guarantees the stability of the control system for a perturbed plant. The design procedure of our proposed method consists of three steps. First, we design a basic controller for a nominal plant using the LQG method and parametrize a whole control system. Next, we identify the deviation between the perturbed plant and the nominal one using a closed-loop identification method and design a free parameter of parametrization to stabilize the closed-loop system. Finally, we design a feedforward controller so as to incorporate GPC technique into our controller structure. A numerical example is presented to show the effectiveness of our proposed method.

  • PDF

Fast Gain Scheduling Using Fuzzy Disturbance Estimator

  • Lee, Seon-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.48.5-48
    • /
    • 2001
  • The resulting stabilizing controller in this paper consists of the disturbance estimator and the gain scheduled controller. The disturbance estimator tracks the unknown external disturbance and its derivative information in the closed-loop control system using fuzzy logic based adaptation law. Moreover, the gains of the stabilizing controller are appropriately scheduled according to the estimated values. Furthermore, since the estimation law is combined with the stabilizing controller in the closed control loop, it asymptotically minimizes the estimation error. In order to conrm the usefulness of the proposed control scheme, it is applied to the magnetic suspension systems.

  • PDF

An Efficient Power Control Algorithm for Satellite Communications Systems with ATC

  • Kim, Byung-Gi;Ryoo, Sang-Jin;Hwang, In-Tae
    • Journal of information and communication convergence engineering
    • /
    • 제6권2호
    • /
    • pp.129-133
    • /
    • 2008
  • In this paper, modified power control algorithms are proposed for a satellite mobile communications system with ATC (ancillary terrestrial component). In order to increase system capacity and reduce the transmitting power of the user's equipment, we propose the modified power control scheme consisting of the modified closed-loop and open-loop power control. The modified CLPC (closed-loop power control) algorithm, combining the delay compensation algorithms and pilot diversity, is mainly applied to the ATC link in urban areas because it is more suitable to the short RTD (round-trip delay). In the case of rural areas where ATCs are not deployed or a signal is not received from ATCs, combining monitoring transmitting power equipment and OLPC (open-loop power control) algorithms using an efficient pilot diversity is mainly applied to the link between the user's equipment and the satellite. Two power control algorithms are applied equally to the boundary areas where two kinds of signals are received in order to ensure coverage continuity. The simulation results show that the modified power control scheme has good performance compared to conventional power control schemes in a GEO (geostationary earth orbit) satellite system with ATC.

유도제어시스템을 포함한 과학위성 M-3H-3의 궤도해석 (Launch trajectory analysis of a scientific satellite M-3H-3 including guidance and control system)

  • 최재원;이장규;이승현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.59-64
    • /
    • 1989
  • In this paper, the launch trajectory of the Japan scientific satellite M-3H-3 from launch to orbit injection is investigated. For the terminal conditions at a guidance target point, a guidance and control system is used. An open-loop and a closed-loop guidance schemes are used simultaneously. For the closed-loop guidance scheme, the velocity polynomial algorithm represented by the velocity difference between the target point and present velocity is used. A PD control system is used for activating gimbal type engines. The simulation result shows that all the terminal position and velocity conditions are satisfied and the trajectory for the M-3H-3 scientific satellite is reasonable.

  • PDF

Structural Analysis and Design of Robust Motion Controllers for High-Accuracy Positioning Systems

  • Kim, Bong-Keun;Chung, Wan-Kyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.467-467
    • /
    • 2000
  • In this paper, a structural design method of robust motion controllers for high-accuracy positioning systems, which makes it possible to predict the performance of the whole closed-loop system, is proposed. First, a stabilizing control input is designed based on robust internal-loop compensate.(RTC) for the system in the presence of uncertainty and disturbance. Next, using the structural characteristics of the RIC, disturbance attenuation properties and the performance of the closed-loop system determined by the variation of controller gains are analyzed. Through this analysis, in some specific applications, it is shown that if the control gain of RIC is increased by N times, the magnitude of error is reduced to its 1/N. Finally, the proposed method is verified through experiments using a high-accuracy positioning system used in the semiconductor chip mounting devices.

  • PDF

Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models

  • Lee Choon-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권4호
    • /
    • pp.428-437
    • /
    • 2006
  • Many physical systems are hybrid in the sense that they have continuous behaviors and discrete phenomena. In control system with multiple models, switching strategy and stability of the closed-loop system under switching are very important issues. In this paper, a novel adaptive control scheme based on multiple parameter models is proposed to cope with a change in Parameters. Switching strategy guarantees the non-increase in the global control Lyapunov function if the estimation of Lyapunov function value converges. Least-square estimation is used to find the estimated value of the Lyapunov function. Switching and adaptation law guarantees the stability of closed-loop system in the sense of Lyapunov. Simulation results on anti-lock brake system are shown to verify the effectiveness of the proposed controller in view of a large change in system parameters.

장력 관측기에 의한 연속공정라인의 장력 제어 (Tension Control for a Continuous Processing Line using Closed Loop Observer)

  • 이정욱;박일영;최창호;현동석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2620-2622
    • /
    • 1999
  • To control a continuous processing line, it is necessary to take the entire system into account. In this paper observers to estimate the line tension are discussed. Considering a tension as a external disturbance, a closed loop observers are designed. It becomes clear that the proposed tension control scheme has high accuracy performance and simplicity.

  • PDF

A controller design method based on the Hessenberg form

  • Ishijima, Shintaro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1123-1126
    • /
    • 1990
  • A new controller design algorithm based on the Hessenberg form for linear control systems has een proposed. The controller is composed of the dynamic compensator and the state feedback (dynamic state feedback). The algorithm gives a simple way to assign the eigenstructure (eigenvalues and eigenvectors) of the closed loop system and it also provides a method to assign the frequency shapes near the corner frequencies of the closed loop transfer function matrix. Because of this property, the algorithm is called the independent frequency shape control (IFSC) method.

  • PDF

페루프 외란 검출기를 통한 광디스크 외란 측정 (Disturbance estimation of optical disc by closed loop output estimator)

  • Park, Jin-Young;Chun, Chan-Ho;Jun, Hong-Gul;Lee, Moon-Noh;Hyunseok Yang;Park, Young-Pil
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1166-1171
    • /
    • 2001
  • The method for output disturbance estimation is proposed. In this method, output disturbance is estimated from the closed loop system dynamics using the output and control input signals. In the closed-loop output-disturbance estimator, precise system identification is required to reduce estimation error. The realization of estimator was done by the DSP board (DSPl103), and disturbance estimation in various environments was performed: change of rotation speed, media feature and spindle motor with (or without) auto-ball balancing system (ABS). From these experiments, the disturbance characteristics of ODD under various conditions are analyzed, and the desirable servo loop configuration based these results is proposed.

  • PDF