• Title/Summary/Keyword: Closed porosity

Search Result 58, Processing Time 0.037 seconds

Characteristic Changes of the Hydrated Sodium Silicate Depending on Heat Treatment Temperature (수화된 규산소다의 열처리 온도에 따른 물성변화)

  • Kong, Yang-Pyo;Cho, Ho-Yeon;Suhr, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.185-189
    • /
    • 2008
  • In order to fabricate porous ceramics, hydrated sodium silicate was synthesized by hydrothermal reaction using anhydrous sodium silicate. The microstructural and the structural characteristics of the expanded ceramics were observed depending on heat treatment temperature (550, 600, 650, $700^{\circ}C$) and then the effect of these characteristics on the compressive strength and the temperature gradient was investigated. As the heat treatment temperature was increased, the compressive strength was decreased from $0.717KN/cm^2\;(550^{\circ}C)\;to\;0.166KN/cm^2\;(700^{\circ}C)$. The temperature gradient was increased with increasing the experimental temperature regardless of the heat treatment temperature. The temperature gradient of the expanded ceramics which was heat treated at $650^{\circ}C\;was\;300^{\circ}C$. The bulk specific gravity, porosity, pore size, pore characteristics and wall thickness were varied depending on heat treatment temperature, and the compressive strength and the temperature gradient were governed by the complex effects of these factors.

Microstructure and Physical Properties of Porous Material Fabricated from a Glass Abrasive Sludge (유리연마슬러지를 사용한 다공성 소재의 미세구조 및 물리적 특성에 관한 연구)

  • Chu, Yong-Sik;Kwon, Choon-Woo;Lee, Jong-Kyu;Shim, Kwang-Bo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.277-283
    • /
    • 2006
  • A porous material with a surface layer was fabricated from glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents and compacted into precursors. These precursors were sintered in the range of $700-900^{\circ}C$ for 20 min. The sintered porous materials had a surface layer with smaller pores and inner parts with larger pores. The surface layer and closed pores controlled water absorption. As the expanding agent fraction and the sintering temperature increased, the porosity and pore size increased. The porous materials with $Fe_2O_3$ and graphite as the expanding agents had a low absorption ratio of about 3% or lower while the porous material with $CaCO_3$ as the expanding agent had a higher absorption ratio and more open pores.

Effect of trunk length on the flow around a fir tree

  • Lee, Jin-Pyung;Lee, Eui-Jae;Lee, Sang-Joon
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.69-82
    • /
    • 2014
  • Flow around a small white fir tree was investigated with varying the length of the bottom trunk (hereafter referred to as bottom gap). The velocity fields around the tree, which was placed in a closed-type wind tunnel test section, were quantitatively measured using particle image velocimetry (PIV) technique. Three different flow regions are observed behind the tree due to the bottom gap effect. Each flow region exhibits a different flow structure as a function of the bottom gap ratio. Depending on the gap ratio, the aerodynamic porosity of the tree changes and the different turbulence structure is induced. As the gap ratio increases, the maximum turbulence intensity is increased as well. However, the location of the local maximum turbulence intensity is nearly invariant. These changes in the flow and turbulence structures around a tree due to the bottom gap variation significantly affect the shelter effect of the tree. The wind-speed reduction is increased and the height of the maximum wind-speed reduction is decreased, as the gap ratio decreases.

Material Nonlinear Behavior and Microstructural Transition of Porous Polyurethane Foam under Uniaxial Compressive Loads (일축 압축하중 하 다공성 폴리우레탄폼의 재료비선형 거동 및 미세구조 변화)

  • Lee, Eun Sun;Goh, Tae Sik;Lee, Chi-Seung
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.688-694
    • /
    • 2017
  • Porous materials such as polymeric foam are widely adopted in engineering and biomedical fields. Porous materials often exhibit complex nonlinear behaviors and are sensitive to material and environmental factors including cell size and shape, amount of porosity, and temperature, which are influenced by the type of base materials, reinforcements, method of fabrication, etc. Hence, the material characteristics of porous materials such as compressive stress-strain behavior and void volume fraction according to aforementioned factors should be precisely identified. In this study, unconfined uniaxial compressive test for two types of closed-cell structure polyurethane foam, namely, 0.16 and $0.32g/cm^3$ of densities were carried out. In addition, the void volume fraction of three different domains, namely, center, surface and buckling regions under various compressive strains (10 %, 30 %, 50 % and 70 %) were quantitatively observed using Micro 3D Computed Tomography(micro-CT) scanning system. Based on the experimental results, the relationship between compressive strain and void volume fraction with respect to cell size, density and boundary condition were investigated.

Study on the Enhanced Specific Surface Area of Mesoporous Titania by Annealing Time Control: Gas Sensing Property (열처리 시간에 따른 메조기공 타이타니아의 비표면적 향상 연구: 가스센싱 특성 변화)

  • Hong, M.-H.;Park, Ch.-S.;Park, H.-H.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • Mesoporous ceramic materials were applied in various fields such as adsorbent and gas sensor because of low thermal conductivity and high specific surface area properties. This structure could be divided into open-pore structure and closed-pore structure. Although closed-pore structure mesoporous ceramic materials have higher mechanical property than open-pore structure, it has a restriction on the application because the increase of specific surface area is limited. So, in this work, specific surface area of closed-pore structure $TiO_2$ was increased by anneal time. As increased annealing time, crystallization and grain growth of $TiO_2$ skeleton structured material in mesoporous structure induced a collapse and agglomeration of pores. Through this pore structural change, pore connectivity and specific surface area could be enhanced. After anneal for 24 hrs, porosity was decreased from 36.3% to 34.1%, but specific surface area was increased from $48m^2/g$ to $156m^2/g$. CO gas sensitivity was also increased by about 7.4 times due to an increase of specific surface area.

Analyzing the Improvement and Using Realities for the Songrim Woodlands Management in Hadong, Gyeongsangnamdo (하동 송림 관리 및 이용실태와 개선방안 분석)

  • Hwa, Sam Young;Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.315-322
    • /
    • 2013
  • This study was carried out to establish a management program and soil restoration plan through analysis of soil properties and visitor questionnaires in Songrim in Hadong, Korea. Soil bulk density in Songrim was slightly higher in the closed-woodlands ($1.31g/cm^3$) than in the open-woodlands ($1.39g/cm^3$). Soil bulk density in the closed-woodlands was higher in walking trails ($1.74g/cm^3$) than in forest areas ($1.39g/cm^3$), while the rates of pore space were lower in walking trails (42.6%) than in forest areas (50.5%). The soil porosity were lower in the closed-woodlands (34.6%) than in the open-woodlands (42.6%). Soil strength in surface soil was slightly lower in the open-woodlands ($8.5kgf/cm^2$) than in the closed-woodlands ($10.5kgf/cm^2$). The content of organic matter, total nitrogen and exchangeable cations of the woodlands was low compared with the optimum nutrient content for tree growth in Korea forest soil. According to the survey, the objective of visiting in Songrim was to enjoy recreation and landscape views. To conserve pine forest ecosystems in Songrim, the respondents said that it needs to the implement of closed-woodland periods, the establishment of smoking free zone, and the prohibition of garbage throwing and alcohol including disciplinary rules and education. Also the respondents said that pine forest ecosystem in Songrim is relatively sound, but the woodlands require the intensive management to the ecosystem and the introduction of native understory vegetation, such as grasses under pine forest ecosystem. It is recommended to designate the rest-year forest for a proper period in all woodlands to restore the Songrim soil rather than the alternation application between the rest-year for three years or non-rest-year trails, and to open partially the walking trails across the woodlands after the period. In addition, the forest within the woodland is need to designate a long-term rest-year.

Physical and mechanical properties of volcanic glass in the Samho area, South Korea (삼호지역에 분포하는 유리질화산암에 대한 물리적$\cdot$역학적 특성)

  • Kang Seong-Seung;Lee Heon-Jong;Kang Choo-Won;Kim Cheong-Bin
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.223-227
    • /
    • 2005
  • The physical and mechanical properties of volcanic glass, which is distributed in the Samho area, South Korea were studied. Laboratory rock tests were carried out in order to obtain the various properties of rocks. Specific gravity, water content, absorption, porosity and wave velocity were measured for the physical properties. Uniaxial and triaxial compressive tests, Brazilian test and point load test were also performed for the mechanical properties. The tests of volcanic glass revealed that the apparent specific gravity, water content and absorption were 2.28, $1.67\%$ and $1.72\%$, respectively. Porosity $(3.87\%)$ was lower, whereas P-wave velocity (5330m/s) and S-wave velocity (2980 m/s) were relatively higher. Brazilian tensile strength ot 7.2MPa, and point load strength of 2.6MPa were among the mechanical properties of the rock. Uniaxial compressive strength (62.4MPa) estimated ken point load strength was very closed to the value (66.0MPa) from the uniaxial compressive test. Young's modulus and Poisson's ratio were E=43.2 GPa and v=0.28, respectively. Drawing the tangent line to Mohr-Coulomb failure criterion showed the cohesion of 20.1MPa and internal fraction angle of $28.6^{\circ}$.

Eco-friendly Self-cooling System of Porous Onggi Ceramic Plate by Evaporation of Absorbed Water

  • Katsuki, Hiroaki;Choi, Eun-Kyong;Lee, Won-Jun;Kim, Ung-Soo;Hwang, Kwang-Taek;Cho, Woo-Seok
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.153-159
    • /
    • 2018
  • Porous ceramic plates were prepared from Onggi clay and bamboo charcoal powder at 1100 and $1200^{\circ}C$ and their porous properties and water absorption, and the cooling effect of porous plates, were investigated to produce eco-friendly porous ceramics for a self-cooling system that relies on the evaporation of absorbed water. Porous properties were dependent on the particle size of charcoal powder pore forming additive and the firing temperature; properties were also found to be dependent on the total pore volume, average pore size and porosity, which had values of $0.103-0.243cm^3/g$, 0.81 - 2.56 mm and 20.9 - 38.2%, respectively, at $1100^{\circ}C$ and $0.04-0.18cm^3/g$, 0.33 - 2.03 mm and 10.8 - 30.9%, respectively, at $1200^{\circ}C$. Cooling temperature difference of flowing air parallel to surface of porous ceramic plates fired with two kinds of charcoal powder at $1100^{\circ}C$ was $3.5-3.6^{\circ}C$ at $26^{\circ}C$ and 60% of relative humidity in a closed box. Cooling temperature difference was dependent on the number of porous plates and the distance between porous plates. A simple and eco-friendly cooling system using porous ceramic plates fired from Onggi clay and charcoal powder was proposed.

Root metabolic cost analysis for root plasticity expression under mild drought stress

  • Kano-Nakata, Mana;Mitsuya, Shiro;Inukai, Yoshiaki;Yamauchi, Akira
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.328-328
    • /
    • 2017
  • Drought is a major limiting factor that reduces rice production and occurs often especially under recent climate change. Plants have the ability to alter their developmental morphology in response to changing environment, which is known as phenotypic plasticity. In our previous studies, we found that one chromosome segment substitution line (CSSL50 derived from Nipponbare and Kasalath crosses) showed no differences in shoot and root growth as compared with the recurrent genotype, Nipponbare under non-stress condition but showed greater growth responses compared with Nipponbare under mild drought stress condition. We hypothesized that reducing root respiration as metabolic cost, which may be largely a consequence of aerenchyma formation would be one of the key mechanisms for root plasticity expression. This study aimed to evaluate the root respiration and aerenchyma formation under various soil moisture conditions among genotypes with different root plasticity. CSSL50 together with Nipponbare and Kasalath were grown under waterlogged conditions (Control) and mild drought stress conditions (20% of soil moisture content) in a plastic pot ($11cm{\times}14cm$, ${\varphi}{\times}H$) and PVC tube ($3cm{\times}30cm$, ${\varphi}{\times}H$). Root respiration rate was measured with infrared gas analyzer (IRGA, GMP343, Vaisala, Finland) with a closed static chamber system. There was no significant difference between genotypes in control for shoot and root growth as well as root respiration rate. In contrast, all the genotypes increased their root respiration rates in response to mild drought stress. However, CSSL50 showed lower root respiration rate than Nipponbare, which was associated by higher root aerenchyma formation that was estimated based on internal gas space (porosity) under mild drought stress conditions. Furthermore, there were significant negative correlations between root length and root respiration rate. These results imply that reducing the metabolic cost (= root respiration rate) is a key mechanism for root plasticity expression, which CSSL50 showed under mild drought.

  • PDF

Modelling of aluminium foam sandwich panels

  • D'Alessandro, Vincenzo;Petrone, Giuseppe;De Rosa, Sergio;Franco, Francesco
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.615-636
    • /
    • 2014
  • Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.