Browse > Article
http://dx.doi.org/10.12989/sss.2014.13.4.615

Modelling of aluminium foam sandwich panels  

D'Alessandro, Vincenzo (PASTA-Lab, Laboratory for Promoting experiences in Aeronautical Structures and Acoustics Department of Industrial Engineering-Aerospace Section Universita degli Studi di Napoli "Federico II")
Petrone, Giuseppe (PASTA-Lab, Laboratory for Promoting experiences in Aeronautical Structures and Acoustics Department of Industrial Engineering-Aerospace Section Universita degli Studi di Napoli "Federico II")
De Rosa, Sergio (PASTA-Lab, Laboratory for Promoting experiences in Aeronautical Structures and Acoustics Department of Industrial Engineering-Aerospace Section Universita degli Studi di Napoli "Federico II")
Franco, Francesco (PASTA-Lab, Laboratory for Promoting experiences in Aeronautical Structures and Acoustics Department of Industrial Engineering-Aerospace Section Universita degli Studi di Napoli "Federico II")
Publication Information
Smart Structures and Systems / v.13, no.4, 2014 , pp. 615-636 More about this Journal
Abstract
Aluminium Foam Sandwich (AFS) panels are becoming always more attractive in transportation applications thanks to the excellent combination of mechanical properties, high strength and stiffness, with functional ones, thermo-acoustic isolation and vibration damping. These properties strongly depend on the density of the foam, the morphology of the pores, the type (open or closed cells) and the size of the gas bubbles enclosed in the solid material. In this paper, the vibrational performances of two classes of sandwich panels with an Alulight(R) foam core are studied. Experimental tests, in terms of frequency response function and modal analysis, are performed in order to investigate the effect of different percentage of porosity in the foam, as well as the effect of the random distribution of the gas bubbles. Experimental results are used as a reference for developing numerical models using finite element approach. Firstly, a sensitivity analysis is performed in order to obtain a limit-but-bounded dynamic response, modelling the foam core as a homogeneous one. The experimental-numerical correlation is evaluated in terms of natural frequencies and mode shapes. Afterwards, an update of the previous numerical model is presented, in which the core is not longer modelled as homogeneous. Mass and stiffness are randomly distributed in the core volume, exploring the space of the eigenvectors.
Keywords
aluminium foam; sandwich panel; modal analysis; modelling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ashby, M.F., Evans, A., Fleck, N.A., Gibson, L.J., Hutchinson, J.W. and Wadley, H. (2000), Metal foams: a design guide, Butterworth-Heinemann, Boston.
2 Banhart, J. (2001), "Manufacture, characterisation and application of cellular metals and metal foams", Prog. Mater. Sci., 46(6), 559-632.   DOI   ScienceOn
3 Banhart, J. (2005), "Aluminium foams for lighter vehicles", Int. J. Vehicle. Des., 37(2-3), 114-125.   DOI   ScienceOn
4 Banhart, J. and Baumeister, J. (1998), "Deformation characteristics of metal foams", J. Mater. Sci., 33(6), 1431-1440.   DOI   ScienceOn
5 Banhart, J. and Seeliger, H.W. (2008), "Aluminium foam sandwich panels: manufacture, metallurgy and applications", Adv. Eng. Mater., 10(9), 793-802.   DOI   ScienceOn
6 Baumeister, J., Banhart, J. and Weber, M. (1997), "Aluminium foams for transport industry", Mater. Design., 18(4-6), 217-220.   DOI   ScienceOn
7 Stobener, K., Baumeister, J., Rausch, G. and Rausch, M. (2005). "Forming metal foams by simpler methods for cheaper solutions", Met. Powder Rep., 60(1), 12-16.
8 Yan, Y.X., Hui, L.X., M, Y., J, F. and Dong, L.H. (2013), "Dynamic response time of a metal foam magneto-rheological damper", Smart Mater. Struct., 22(2), 1-8.
9 Crupi, V., Epasto, G. and Guglielmino, E. (2011), "Impact response of aluminum foam sandwiches for light-weight ship structures", Metals, 1(1), 98-112.   DOI
10 D'Alessandro, V. (2010), Vibroacoustic numerical investigation for innovative sandwich panel configurations, Master Thesis, Aerospace Engineering, Department of Aerospace Engineering, Universita degli Studi di Napoli "Federico II".
11 D'Alessandro, V., Amabili, M., De Rosa, S. and Franco, F. (2012), "Preliminary identification of sandwich panels", Proceedings of the 4th International Conference on Noise and Vibration: Emerging Methods (NOVEM 2012), Sorrento (Italy), April 1-4.
12 De Silva, C.W. (2000), Vibration: Fundamentals And Practice. CRC Press, Boca Raton, FL.
13 Degischer, H.P. and Kriszt, B. (2002), Handbook of cellular metals: production, processing, applications, Wiley-VCH.
14 Franco, F., Cunefare, K.A. and Ruzzene, M. (2007), "Structural-acoustic optimization of sandwich panels", J. Vib. Acoust., 129(3), 330-340.   DOI   ScienceOn
15 Franco, F., De Rosa, S. and Polito, T. (2011), "Finite element investigations on the vibroacoustic performance of plane plates with random stiffness", Mech. Adv. Mater. Struct., 18(7), 484-497.   DOI   ScienceOn
16 Kaiser, O.S., Eickenbusch, H., Grimm, V. and Zweck, A. (2008). The future of the car, Zukunftige Technologien Consulting, Dusseldorf.
17 Gibson, L.J. and Ashby, M.F. (1999), Cellular solids: structure and properties, Cambridge University Press, Cambridge, New York.
18 Jimenez, C., Garcia-Moreno, F., Mukherjee, M., Goerke, O. and Banhart, J. (2009), "Improvement of aluminium foaming by powder consolidation under vacuum", Scr. Mater., 61(5), 552-555.   DOI   ScienceOn
19 Laird, G. (2010), "Modeling composites with Femap 10.1.1 - An introduction to the how's and why's", from http://www.predictiveengineering.com/.
20 Lehmhus, D. and Banhart, J. (2003), "Properties of heat-treated aluminium foams", Mater. Sci. Eng. A, 349(1-2), 98-110.   DOI   ScienceOn
21 Matijasevic, B. and Banhart, J. (2006), "Improvement of aluminium foam technology by tailoring of blowing agent", Scr. Mater., 54(4), 503-508.   DOI   ScienceOn
22 Modarreszadeh, M. (2005), Dynamic analysis of structures with interval uncertainty, PhD Thesis, Case Western Reserve University.
23 Mukherjee, M., Garcia-Moreno, F. and Banhart, J. (2010), "Defect generation during solidification of aluminium foams", Scr. Mater., 63(2), 235-238.   DOI   ScienceOn
24 Polito, T., Franco, F. and De Rosa, S. (2010), "Parametric analyses of lightweight metallic sandwich plates", Proceedings of the 24th International Conference on Noise and Vibration engineering (ISMA 2010), Leuven (Belgium), September 20-22.
25 Schwingel, D., Seeliger, H.-W., Vecchionacci, C., Alwes, D. and Dittrich, J. (2007). "Aluminium foam sandwich structures for space applications", Acta Astronaut., 61(1-6), 326-330.   DOI   ScienceOn
26 Simone, A.E. and Gibson, L.J. (1998), "The effects of cell face curvature and corrugations on the stiffness and strength of metallic foams", Acta Mater., 46(11), 3929-3935.   DOI   ScienceOn
27 Banhart, J., Baumeister, J. and Weber, M. (1996), "Damping properties of aluminium foams", Mater. Sci. Eng. A, 205(1-2), 221-228.   DOI   ScienceOn
28 Casavola, C., Pappalettere, C. and Brandizzi, M. (2007), "Mechanical characterization of bonded and welded AFS sandwich component", Proceedings of the International Conference on Advanced Technology in Experimental Mechanics (ATEM 07), Fukuoka (Japan), 12-14 September.
29 Heylen, W., Lammens, S. and Sas, P. (1998), Modal analysis theory and testing, Katholieke Universiteit Leuven, Faculty of Engineering, Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation.
30 Saadatfar, M., Mukherjee, M., Madadi, M., Schroder-Turk, G.E., Garcia-Moreno, F., Schaller, F.M., Hutzler, S., Sheppard, A.P., Banhart, J. and Ramamurty, U. (2012), "Structure and deformation correlation of closed-cell aluminium foam subject to uniaxial compression", Acta Mater., 60(8), 3604-3615.   DOI