• Title/Summary/Keyword: Closed Circuit

Search Result 343, Processing Time 0.033 seconds

Real-time Dog Behavior Analysis and Care System Using Sensor Module and Artificial Neural Network (센서 모듈과 인공신경망을 활용한 실시간 반려견 행동 분석 및 케어 시스템)

  • Hee Rae Lee;Seon Gyeong Kim;Hyung Gyu Lee
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.4
    • /
    • pp.35-42
    • /
    • 2024
  • In this study, we propose a method for real-time recognition and analysis of dog behavior using a motion sensor and deep learning techonology. The existing home CCTV (Closed-Circuit Television) that recognizes dog behavior has privacy and security issues, so there is a need for new technologies to overcome them. In this paper, we propose a system that can analyze and care for a dog's behavior based on the data measured by the motion sensor. The study compares the MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) models to find the optimal model for dog behavior analysis, and the final model, which has an accuracy of about 82.19%, is selected. The model is lightened to confirm its potential for use in embedded environments.

A Study on RF Characteristics of Transmission Line Employing Inverted Periodically Arrayed Capacitive Devices for Application to Highly Miniaturized Wireless Communication system on MMIC (MMIC 상에서 초소형 무선 통신 시스템에의 응용을 위한 반전된 형태의 주기적 용량성 구조를 이용한 전송선로의 RF 특성에 관한 연구)

  • Kim, Jeong-Hoon;Jang, Jang-Hyeon;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.1
    • /
    • pp.52-57
    • /
    • 2015
  • In this paper, we studies on the RF characteristics of the transmission line employing IPACD (inverted periodically arrayed capacitive devices) on MMIC (monolithic microwave integrated circuit) for application to wireless communication system. According to measured results, the novel transmission line employing IPACD showed a wavelength much shorter than conventional transmission lines. In addition, the IPACD structure showed an effective permittivity much higher than conventional ones. We also extracted the bandwidth characteristic of the IPACD structure using equivalent circuit analysis. According to the results, the cut-off frequency of the proposed structure was 129.2 GHz.

A Study on the Construction of Test circuit and Unification of Experiment Method for High Voltage Gas-insulated Load Switch using High Power Testing System (특고압 가스 절연 부하 개폐기의 통합형 대전력 시험 방법 및 회로 구성에 관한 연구)

  • Jung, Heung-Soo;Kim, Min-Young;Kim, Juen-Suk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.12
    • /
    • pp.36-46
    • /
    • 2008
  • This paper is to study on the Construction of Test circuit and Unification of Experiment Method for high voltage gas-insulated load switch using high power testing system The high power testing system is a equipment to verify electrical and mechanical performance on electrical product. The system consist of short-circuit generator, back-up breaker, making switch, impedance, high voltage transformer, low voltage transformer, measuring and protection system, etc. Using this system, we can test related to high power, for example, short-time current test, active load Current test, magnetizing Current test, capacitive current test, closed loop current test, etc. Standards of high voltage gas-insulated load switch that is in use domestic distribution line are ES 5925-0002, IEC 60265-1, IEC 62271-1 and IEEE C 37.74, etc. In this paper, we standardized on the test procedure, organization of test circuit and analysis of measured data prescribed many difference standards, and applied this test method to 600[MVA] high power testing system. So that we can test the load switch satisfied standards.

Development, Implementation and Experimentation on a dSPACE DS1104 of a Direct Voltage Control Scheme

  • Hmidet, Ali;Dhifaoui, Rachid;Hasnaoui, Othman
    • Journal of Power Electronics
    • /
    • v.10 no.5
    • /
    • pp.468-476
    • /
    • 2010
  • This paper proposes and develops a new direct voltage control (DVC) approach. This method is designed to be applied in various applications for AC drives fed with a three-phase voltage source inverter (VSI) working with a constant switching time interval as in the standard direct torque control (DTC) scheme. Based on a very strong min(max) criterion dedicated to selecting the inverter voltage vector, the developed DVC scheme allows the generation of accurate voltage forms of waves. The DVC algorithm is implemented on a dSPACE DS1104 controller board and then compared with the space vector pulse width modulation technique (SVPWM) in an open loop AC drive circuit. To demonstrate the efficiency of the developed algorithm in real time and in closed loop AC drive applications, a scalar control scheme for induction motors is successfully implemented and experimentally studied. Practical results prove the excellent performance of the proposed control approach.

Phase Shift Control for Series Active Voltage Quality Regulators

  • Xiao, Guochun;Teng, Guofei;Chen, Beihai;Zhang, Jixu
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.664-676
    • /
    • 2012
  • A phase shift algorithm based on the closed-loop control of dc-link voltage implemented on a series active voltage quality regulator (AVQR) is proposed in this paper. To avoid pumping-up the dc-link voltage, a general phase shift compensation strategy is applied. The relationships among the operation variables are discussed in detail, which is very important for guiding the design of both the main circuit and the control system. Then on the basis of an investigation of the dc-link voltage pumping-up from viewpoint of the active power flow, a novel phase shift control method based on the closed-loop of the dc-link voltage is proposed. This method can adjust the phase of the output voltage gradually and automatically according to the dc-link voltage variation without introducing a phase jump. The effectiveness of the proposed strategy is verified through simulations of a single-phase 5kVA prototype and laboratory experiments on both a single-phase 5kVA and a three-phase 15kVA prototype.

Performance Analysis of Hybrid Heat Pump System of the Air-to-Air/Air-to-Water with the Ambient Temperature (외기온 변화에 따른 공기-공기/공기-물 형태로 된 복합형 열펌프 시스템의 성능 특성 분석)

  • 송현갑
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.273-278
    • /
    • 2000
  • The hybrid heat pump system of the air to air and / or air to water was composed and its COP was analyzed with the ambient temperature on the opened and closed loop system respectively. The results be indicated by the equation(7) that the COP(Coefficient of Performance) of air-source(air to air and / or air-water) heat pump is effected with the ambient air temperature and AVACTHE.(Automatic Variable Area Capillary Type Heat Exchanger) 2. The COP of air-to-water heat pump without AVACTHE decreased in accordance with the ambient temperature decrease, however in case of the heat pump with AVACTHE the COP was maintained at 2.8∼3.0 level when the ambient temperature decrease from -$5^{\circ}C$ to $-11^{\circ}C$. 3. The COP of the air-to-water heat pump operated on the open loop was higher 40∼58% than that of the heat pump operated on the close loop. 4. The lower ambient temperature air effect on the COP of the air-to-air heat pump operated on the semi closed loop could be controlled using the AVACTHE, and at the high ambient air temperature the COP increased using the Bypass circuit.

  • PDF

Measurement set-up for CMOS-based integrated circuits and systems at cryogenic temperature (CMOS 기반의 집적 회로 및 시스템을 위한 극저온 측정 환경 구축)

  • Hyeon-Sik Ahn;Yoonseuk Choi;Junghwan Han;Jae-Won Nam;Kunhee Cho;Jusung Kim
    • Journal of IKEEE
    • /
    • v.28 no.2
    • /
    • pp.174-179
    • /
    • 2024
  • In this work, we introduce a complementary metal-oxide semiconductor(CMOS)-based integrated circuit(IC) measurement set-up for quantum computer control and read-out using a cryogenic refrigerator. CMOS circuits have to operate at extremely low temperatures of 3 to 5 K for qubit stability and noise reduction. The existing cryogenic measurement system is liquid helium quenching, which is expensive due to the long-term use of expendable resources. Therefore, we describe a cryogenic measurement system based on a closed cycle refrigerator (CCR) that is cost-free even when using helium gas for long periods of time. The refrigerator capable of reaching 4.7 K was built using a Gifford-Mcmahon(G-M) type cryocooler. This is expected to be a cryogenic refrigerator set-up with excellent price competitiveness.

Study on load tracking characteristics of closed Brayton conversion liquid metal cooled space nuclear power system

  • Li Ge;Huaqi Li;Jianqiang Shan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1584-1602
    • /
    • 2024
  • It is vital to output the required electrical power following various task requirements when the space reactor power supply is operating in orbit. The dynamic performance of the closed Brayton cycle thermoelectric conversion system is initially studied and analyzed. Based on this, a load tracking power regulation method is developed for the liquid metal cooled space reactor power system, which takes into account the inlet temperature of the lithium on the hot side of the intermediate heat exchanger, the filling quantity of helium and xenon, and the input amount of the heat pipe radiator module. After comparing several methods, a power regulation method with fast response speed and strong system stability is obtained. Under various changes in power output, the dynamic response characteristics of the ultra-small liquid metal lithium-cooled space reactor concept scheme are analyzed. The transient operation process of 70 % load power shows that core power variation is within 30 % and core coolant temperature can operate at the set safety temperature. The second loop's helium-xenon working fluid has a 65K temperature change range and a 25 % filling quantity. The lithium at the radiator loop outlet changes by less than ±7 K, and the system's main key parameters change as expected, indicating safety. The core system uses less power during 30 % load power transient operation. According to the response characteristics of various system parameters, under low power operation conditions, the lithium working fluid temperature of the radiator circuit and the high-temperature heat pipe operation temperature are limiting conditions for low-power operation, and multiple system parameters must be coordinated to ensure that the radiator system does not condense the lithium working fluid and the heat pipe.

An Investigation on Enhencing Thermal Efficiency of a Hydrogen Fueled 2 Stroke Free-piston Engine with Reverse Uni-flow Scavenging (역단류 소기방식을 갖는 2행정 프리피스톤 수소기관의 열효율 향상에 관한 연구)

  • Byun, Chang-Hee;Baek, Dae-Ha;Lee, Jong-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.299-304
    • /
    • 2011
  • A hydrogen fueled 2 stroke free-piston engine with reverse uni-flow scavenging have a advantageous structure for the backfire occurrence, but it can reduce thermal efficiency by the circuit-flow to go through a exhaust-port. In this research, varied boost pressure, SVOT and exhaust pressure are used in a 2stroke free-piston engine with hydrogen fueled for studying the possibility of increasing thermal efficiency of free-piston hydrogen engine. As a result, to increase thermal efficiency of free-piston are suitable to supply the mixture after port closed the exhaust rater than to use the scanvenging. And it was increased by the exhaust pressure, to achieve it must be used the lean-mixture at SVOT aBDC $34^{\circ}$.

Fabrication and effect of different temperatures on the supported thin Anode for molten carbonate fuel cell (용융탄산염 연료전지에서 지지체를 사용한 얇은 연료극의 제작과 각기 다른 온도에서의 영향)

  • Park, Dongnyeok;Giulio, Nicola Di;Seo, Dongho;Yoon, Sungpil;Shul, Yonggun;Han, Jonghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.82.1-82.1
    • /
    • 2010
  • Recently, Molten carbonate fuel cells(MCFCs) have been developing to get a good durability and economic feasibility for commercialization. To achieve these objectives, the cost of nickel based electrodes should be reduced. Regular anode thickness used in MCFCs is normally 0.7mm. Thus, in our study, the purpose was to reduce anode thickness up to 0.3 mm keeping MCFC performance on standard levels. In-situ sintering has been used, with 2 different fabrication methods (method A and B) and 2 different supports (support 1 and 2). Voltage losses at different temperature (600,620,640,$650^{\circ}C$) and after 1000 hours showed the higher performance that can be obtained using method B and support 2. After single cell test, an open-circuit voltage(OCV) of 1.075 V and a closed-circuit voltage(CCV) of 0.829V were obtained, at current density of $150mV/cm^2$. Also the voltage loss ratio at different cell temperature was lower in the case of method B and support 2. According to these results, the cost of anode fabrication can be reduced in the future, contributing for the economical feasibility of MCFCs.

  • PDF