Abstract
In this study, we propose a method for real-time recognition and analysis of dog behavior using a motion sensor and deep learning techonology. The existing home CCTV (Closed-Circuit Television) that recognizes dog behavior has privacy and security issues, so there is a need for new technologies to overcome them. In this paper, we propose a system that can analyze and care for a dog's behavior based on the data measured by the motion sensor. The study compares the MLP (Multi-Layer Perceptron) and CNN (Convolutional Neural Network) models to find the optimal model for dog behavior analysis, and the final model, which has an accuracy of about 82.19%, is selected. The model is lightened to confirm its potential for use in embedded environments.
본 연구에서는 움직임 센서 모듈과 딥러닝을 활용하여 반려견의 행동을 실시간으로 인식하고 분석하는 방법을 제안한다. 일반적으로 반려견의 행동을 파악하는 홈 CCTV(Closed-Circuit Television)는 개인의 사생활 보호 문제와 보안 이슈가 있어 이를 극복하기 위한 새로운 기술의 필요성이 제기되고 있다. 본 논문에서는 움직임 센서에서 측정되는 데이터를 기반으로 반려견의 행동을 분석하고 케어할 수 있는 시스템을 제안한다. 본 연구에서는 MLP(Multi-Layer Perceptron)와 CNN(Convolutional Neural Network) 모델을 비교하여 반려견 행동 분석에 적합한 모델을 선정하고 최적화를 하였으며, 실험 결과, 제안된 MLP 모델은 평균 82.19%의 정확도를 보이는 것을 확인하였으며, 모델 경량화를 통해 임베디드 환경에서 효율적으로 활용될 수 있음을 확인하였다.