• Title/Summary/Keyword: Climate change risk assessment

Search Result 140, Processing Time 0.03 seconds

Assessment of Climate Change Impact on Flow Regime and Physical Habitat for Fish (기후변화가 하천 유황과 어류 물리서식처에 미치는 영향 평가)

  • Hong, Il;Kim, Ji Sung;Kim, Kyu Ho;Jeon, Ho Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • Due to the recent climate change realization (timing, rainfall pattern changes), the flow regime is changing according to the watershed. The long-term change of flow regime is causing a significant change in structure and function of aquatic ecosystems. However, there is no analysis from the viewpoint of the aquatic ecosystem including flow rate alteration and ecological characteristics as well as the climate change connection in Korea yet. Therefore, We quantitatively assessed the impact of present-future flow regime alteration due to climate change on the Pseudopungtungia nigra habitat in the Mankyung river and floodplain area. As a result, it was confirmed that extreme hydrological conditions such as flood and drought are intensified in the future than the present. Especially, the changes of flow regime characteristics were clarified by comparing and analyzing the magnitude, frequency, duration, rate of change, and by linking flow regime characteristics with physical habitat analysis, it could be suggested that climate change would significantly increase the risk of future ecological changes.

Impact Assessment of Climate Change on Disaster Risk in North Korea based on RCP8.5 Climate Change Scenario (RCP8.5 기후변화시나리오를 이용한 기후변화가 북한의 재해위험에 미치는 영향 평가)

  • Jeung, Se-Jin;Kim, Byung-Sik;Chae, Soo Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.809-818
    • /
    • 2018
  • In this paper, in order to evaluate the impact of future climate change in North Korea, we collected the climate data of each station in North Korea provided by WMO and expanded the lack of time series data. Using the RCP climate change scenario, And the impact of climate change on disasters using local vulnerability to disasters in the event of a disaster. In order to evaluate this, the 11 cities in North Korea were evaluated for Design Rainfall Load, human risk index (HRI), and disaster impact index (DII) at each stage. As a result, Jaffe increased from C grade to B grade in the Future 1 period. At Future 2, North Hwanghae proved to be dangerous as it was, and Gangwon-do and Hwanghae-do provincial grade rose to C grade. In the case of Future 3, Pyongyang City dropped from C grade to D grade, Hamgyong and Gyeongsang City descend from B grade to C grade, Gangwon-do and Jagangdo descend from C grade to D grade and Pyongyang city descend from C grade to D grade. Respectively.

Assessment of Ecosystem services under changing climate in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon-Jeong;Lee, Sanghyup;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.148-148
    • /
    • 2019
  • The 2006 Millennium Ecosystem Assessment (MA) defines ecosystem services (ES) as "the benefits people obtain from ecosystems". Identifying where ES originates, whom it benefits and how it is changing over a period of time is critical in rapidly developing country like Nepal, where the risk of ES loss is high. In the context of various ecosystem services provided by watershed, this study, particularly deals with water yield, Soil loss and Carbon sequestration computation and evaluation in Bagmati Basin of Nepal. As Bagmati Basin incorporates capital city Kathmandu of nepal, land use change is significant over decades and mapping of ES is crucial for sustainable development of Basin in future. In this regard, the objectives of this study are 1) To compute the total and sub-watershed scale water yield of the basin, 2) Computation of soil loss and sediment retention in the basin, and 3) Computation of carbon sequestration in the basin. Integrated Valuation of Environmental Services and Tradeoffs (InVEST), a popular model for ecosystem service assessment based on Budyko hydrological method is used to compute Ecosystem services. The scenario of ES in two periods of time can be referenced for various approaches of prioritization and incorporation of their value into local and regional decision making for management of basin.

  • PDF

Time-dependent reliability analysis of coastal defences subjected to changing environments

  • Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.49-64
    • /
    • 2015
  • This paper presents a method for assessing the risk of wave run-up and overtopping of existing coastal defences and for analysing the probability of failure of the structures under future hydraulic conditions. The recent UK climate projections are employed in the investigations of the influence of changing environments on the long-term performance of sea defences. In order to reduce the risk of wave run-up and overtopping caused by rising sea level and to maintain the present-day allowances for wave run-up height and overtopping discharge, the future necessary increase in crest level of existing structures is investigated. Various critical failure mechanisms are considered for reliability analysis, i.e., erosion of crest by wave overtopping, failure of seaside revetment, and internal erosions within earth sea dykes. The time-dependent reliability of sea dykes is analysed to give probability of failure with time. The results for an example earth dyke section show that the necessary increase in crest level is approximately double of sea level rise to maintain the current allowances. The probability of failure for various failure modes of the earth dyke has a significant increase with time under future hydraulic conditions.

Production and Analysis of Digital Climate Maps of Evapotranspiration Using Gridded Climate Scenario Data in Korean Peninsula (격자형 기후변화 시나리오 자료를 활용한 한반도의 증발산량 전자 기후도 생산 및 분석)

  • Yoo, Byoung Hyun;Lee, Kyu Jong;Lee, Byun Woo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.2
    • /
    • pp.62-72
    • /
    • 2017
  • Spatio-temporal projection of evapotranspiration over croplands would be useful for assessment of climate change impact and development of adaptation strategies in agriculture. Potential evapotranspiration (PET) and dryness index (DI) during rice growing seasons were calculated using climate change scenario data provided by the National Institute of Meteorological Research (NIMR). A data processing tool for gridded climate data files, readGrADSWrapper, was used to calculate PET and DI during the current (1986-2005) and future (2006-2100) periods. Scripts were written to implement the formulas of PET and DI in R, which is an open source statistical data analysis tool. Evapotranspiration in rice fields ($PET_{Rice}$) was also determined using R scripts. The Spatio-temporal patterns of PET differed by regions in Korean Peninsula under current and future climate conditions. Overall, PET and $PET_{Rice}$ tended to increase throughout the $21^{st}$ century. Those results suggested that region-specific water resource managements would be needed to minimize the risk of water loss in the regions where considerable increases in PET would occur under the future climate conditions. For example, a number of provinces classified as a humid region were projected to become a sub-humid region in the future. The Spatio-temporal assessment of water resources based on PET and DI would help the development of climate change adaptation strategies for rice production in the 21st century. In addition, the studies on climate change impact would be facilitated using specialized data tools, e.g., readGrADSWrapper, for geospatial analysis of climate data.

Climate Change Impacts and Adaptation on Hydrological Safety Perspectives of Existing Dams (기후변화에 따른 댐의 수문학적 안전성 평가 및 적응방안 고찰)

  • Park, Jiyeon;Jung, Il Won;Kwon, Ji Hye;Kim, Wonsul
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.149-156
    • /
    • 2019
  • Assessing the hydrological safety of existing dams against climate change and providing appropriate adaptation measures are important in terms of sustainable water supply and management. Korean major dams ensure their safety through periodic inspections and maintenance according to 'Special Act on the safety control and maintenance of establishments'. Especially when performing a full safety examination, principal engineer must assess the hydrological safety and prepare for potential risks. This study employed future probable maximum precipitation (PMP) estimated using outputs of regional climate models based on RCP4.5 and RCP8.5 greenhouse-gas emission scenarios to assess climate change impact on existing dam's future hydrological safety. The analysis period was selected from 2011 to 2040, from 2041 to 2070, and from 2071 to 2100. Evaluating the potential risk based on the future probable maximum flood (PMF) for four major dams (A, B, C, I) showed that climate change could induce increasing the overflow risk on three dams (A, B, I), although there are small differences depending on the RCP scenarios and the analysis periods. Our results suggested that dam managers should consider both non-structural measures and structural measures to adapt to the expected climate change.

Flood Risk Assessment with Climate Change (기후 변화를 고려한 홍수 위험도 평가)

  • Jeong, Dae-Il;Stedinger, Jery R.;Sung, Jang-Hyun;Kim, Young-Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.55-64
    • /
    • 2008
  • The evidence of changes in the climate system is obvious in the world. Nevertheless, at the current techniques for flood frequency analysis, the flood distribution can not reflect climate change or long-term climate cycles. Using a linear regression and a Mann-Kendall test, trends in annual maximum precipitation and flood data for several major gauging sites were evaluated. Moreover, this research considered incorporating flood trends by climate change effects in flood frequency analyses. For five rainfall gauging sites (Seoul, Incheon, Ulleungdo, Jeonju, and Gangneung), upward trends were observed in all gauged annual maximum precipitation records but they were not statistically significant. For three streamflow gauging sites (Andong Dam, Soyanggang Dam, and Daecheong Dam), upward trends were also observed in all gauged annual maximum flood records, but only the flood at Andong Dam was statistically significant. A log-normal trend model was introduced to reflect the observed linear trends in annual maximum flood series and applied to estimate flood frequency and risk for Andong Dam and Soyanggang Dam. As results, when the target year was 2005, 50-year floods of the log-normal trend model were 41% and 21% larger then those of a log-normal model for Andong Dam and Soyanggang Dam, respectively. Moreover, the estimated floods of the log-normal trend model increases as the target year increases.

The Impact Assessment of Climate Change on Design Flood in Mihochen basin based on the Representative Concentration Pathway Climate Change Scenario (RCP 기후변화시나리오를 이용한 기후변화가 미호천 유역의 설계홍수량에 미치는 영향평가)

  • Kim, Byung Sik;Ha, Sung Ryong
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.105-114
    • /
    • 2013
  • Recently, Due to Climate change, extreme rainfall occurs frequently. In many preceding studies, Because of extreme hydrological events changes, it is expected that peak flood Magnitude and frequency of drainage infrastructures changes. However, at present, probability rainfall in the drainage facilities design is assumed to Stationary which are not effected from climate change and long-term fluctuation. In the future, flood control safety standard should be reconsidered about the valid viewpoint. In this paper, in order to assess impact of climate change on drainage system, Future climate change information has been extracted from RCP 8.5 Climate Change Scenario for IPCC AR5, then estimated the design rainfall for various durations at return periods. Finally, the design flood estimated through the HEC-HMS Model which is being widely used in the practices, estimated the effect of climate change on the Design Flood of Mihochen basin. The results suggested that the Design Flood increase by climate change. Due to this, the Flood risk of Mihochen basin can be identified to increase comparing the present status.

Lake Vulnerability Assessment (호소의 취약성 평가)

  • Kim, Eung-Seok;Yoon, Ki-Yong;Lee, Seung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6877-6883
    • /
    • 2014
  • The continuous social development has led to increasing pollution in lakes. This study proposed the LVRI (Lake Vulnerability Resilience Indicator) based on the vulnerability assessment of climate change for an environmental risk assessment in lakes sufferign water pollution in an integrated aspect of the characteristics in lake watersheds. A total of 11 representative assessment factors were selected and constructed for 6 lake basins in the Geum River Watershed to calculate the exposure, sensitivity and adaptation indicators in a vulnerability assessment classification system. The weight coefficients for assessment factors of the LVRI were also calculated using the Entropy method. This study also compared the rank results of the lake environmental risk with/without the weight coefficients of assessment factors for the practical application of the proposed lake environmental risk assessment method. The lake environmental risk results estimated in this study can be used for long-term water quality analysis and management in lakes.

Development of index for flood risk assessment on national scale and future outlook (전국 단위 홍수위험도 평가를 위한 지수 개발과 미래 전망)

  • Kim, Daeho;Kim, Young-Oh;Jee, Hee Won;Kang, Tae-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.323-336
    • /
    • 2020
  • Owing to climate change, the annual precipitation in Korea has increased since the 20th century, and it is projected to continue increasing in the future. This trend of increasing precipitation will raise the possibility of floods; hence, it is necessary to establish national adaptation plans for floods, based on a reasonable flood risk assessment. Therefore, this study focuses on developing a framework that can assess the flood risk across the country, as well as computing the flood risk index (FRI). The framework, which is based on IPCC AR5, is established as a combination of three indicators: hazard, exposure, and capacity. A data-based approach was used, and the weights of each component were assigned to improve the validity of the FRI. A Spearman correlation analysis between the FRI and flood damage verified that the index was capable of assessing potential flood damage. When predicting scenarios for future assessment using the HadGEM3-RA based on RCP 4.5 and 8.5, the flood risk tends to be lower in the early and mid-21st century, and it becomes higher at the end of the 21st century as compared with the present.