• Title/Summary/Keyword: Climate Prediction

Search Result 789, Processing Time 0.022 seconds

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change (기후변화에 따른 농업생태계 내 해충 발생 예측을 위한 연구 현황 및 향후 과제)

  • Jung, Jong-Kook;Lee, Hyoseok;Lee, Joon-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.368-383
    • /
    • 2014
  • Climate change is expected to affect population density, phenology, distribution, morphological traits, reproduction and genetics of insects, and even in the extinction of insects. To develop novel research subjects for predicting climate change effect, basic information about biological and ecological data on insect species should be compiled and reviewed. For this reason, this study was conducted to collect the biological information on insect pests that are essential for predicting potential damage caused by insect pests in future environment. In addition, we compared domestic and foreign research trends regarding climate change effect and suggested future research subjects. Domestic researchers were rather narrow in the subject, and were mostly conducted based on short-term monitoring data to determine relationship between insects and environmental variables. On the other hand, foreign researches studied on various subjects to analyze the effect of climate change, such as changes in distribution of insect using long-term monitoring data or their prediction using population parameters and models, and monitoring of the change of the insect community structure. To determine change of the phenology, distribution, overwintering characteristics, and genetic structures of insects under climate change through development of monitoring technique, in conclusion, further researches are needed. Also, development of population models for major or potential pests is important for prediction of climate change effects.

Water Quality Analysis of Hongcheon River Basin Under Climate Change (기후변화에 따른 홍천강 유역의 수질 변화 분석)

  • Kim, Duckhwan;Hong, Seung Jin;Kim, Jungwook;Han, Daegun;Hong, Ilpyo;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.4
    • /
    • pp.348-358
    • /
    • 2015
  • Impacts of climate change are being observed in the globe as well as the Korean peninsula. In the past 100 years, the average temperature of the earth rose about 0.75 degree in celsius, while that of Korean peninsula rose about 1.5 degree in celsius. The fifth Assessment Report of IPCC(Intergovermental Panel on Climate Change) predicts that the water pollution will be aggravated by change of hydrologic extremes such as floods and droughts and increase of water temperature (KMA and MOLIT, 2009). In this study, future runoff was calculated by applying climate change scenario to analyze the future water quality for each targe period (Obs : 2001 ~ 2010, Target I : 2011 ~ 2040, Target II : 2041 ~ 2070, Target III : 2071 ~ 2100) in Hongcheon river basin, Korea. In addition, The future water quality was analyzed by using multiple linear regression analysis and artificial neural networks after flow-duration curve analysis. As the results of future water quality prediction in Hongcheon river basin, we have known that BOD, COD and SS will be increased at the end of 21 century. Therefore, we need consider long-term water and water quality management planning and monitoring for the improvement of water quality in the future. For the prediction of more reliable future water quality, we may need consider various social factors with climate components.

Evaluation of Drought Monitoring Using Satellite Precipitation for Un-gaged Basins (미계측지역의 위성강우 기반 가뭄감시 평가)

  • Jang, Sangmin;Yoon, Sunkwon;Lee, Seongkyu;Lee, Taehwa;Park, Kyungwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.55-63
    • /
    • 2018
  • This study analyzed the applications of near real-time drought monitoring using satellite rainfall for the Korean Peninsula and un-gaged basins. We used AWS data of Yongdam-Dam, Hoengseong-Dam in Korea area, the meteorological station of Nakhon Rachasima, Pak chong for test-bed to evaluate the validation and the opportunity for un-gaged basins. In addition, we calculated EDI (Effective doought index) using the stations and co-located PERSIANN-CDR, TRMM (Tropical Rainfall Measurement Mission) TMPA (The TRMM Multisatellite Precipitation Analysis), GPM IMERG (the integrated Multi-satellitE Retrievals for GPM) rainfall data and compared the EDI-based station data with satellite data for applications of drought monitoring. The results showed that the correlation coefficient and the determination coefficient were 0.830 and 0.914 in Yongdam-dam, and 0.689 and 0.835 in Hoengseng-Dam respectively. Also, the correlation coefficient were 0.830, 0.914 from TRMM TMPA datasets and compasion with 0.660, 0.660 based on PERSIANN-CDR and TRMM data in nakhon and pakchong station. Our results were confirmed possibility of near real-time drought monitoring using EDI with daily satellite rainfall for un-gaged basins.

Application of Urban Stream Discharge Simulation Using Short-term Rainfall Forecast (단기 강우예측 정보를 이용한 도시하천 유출모의 적용)

  • Yhang, Yoo Bin;Lim, Chang Mook;Yoon, Sun Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.69-79
    • /
    • 2017
  • In this study, we developed real-time urban stream discharge forecasting model using short-term rainfall forecasts data simulated by a regional climate model (RCM). The National Centers for Environmental Prediction (NCEP) Climate Forecasting System (CFS) data was used as a boundary condition for the RCM, namely the Global/Regional Integrated Model System(GRIMs)-Regional Model Program (RMP). In addition, we make ensemble (ESB) forecast with different lead time from 1-day to 3-day and its accuracy was validated through temporal correlation coefficient (TCC). The simulated rainfall is compared to observed data, which are automatic weather stations (AWS) data and Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA 3B43; 3 hourly rainfall with $0.25^{\circ}{\times}0.25^{\circ}$ resolution) data over midland of Korea in July 26-29, 2011. Moreover, we evaluated urban rainfall-runoff relationship using Storm Water Management Model (SWMM). Several statistical measures (e.g., percent error of peak, precent error of volume, and time of peak) are used to validate the rainfall-runoff model's performance. The correlation coefficient (CC) and the Nash-Sutcliffe efficiency (NSE) are evaluated. The result shows that the high correlation was lead time (LT) 33-hour, LT 27-hour, and ESB forecasts, and the NSE shows positive values in LT 33-hour, and ESB forecasts. Through this study, it can be expected to utilizing the real-time urban flood alert using short-term weather forecast.

Prediction of the Spawning Ground of Todarodes pacificus under IPCC Climate A1B Scenario (IPCC 기후변화 시나리오(A1B)에 따른 살오징어(Todarodes pacificus) 산란장의 변동 예측)

  • Kim, Jung-Jin;Min, Hong-Sik;Kim, Cheol-Ho;Yoon, Jin-Hee;Kim, Su-Am
    • Ocean and Polar Research
    • /
    • v.34 no.2
    • /
    • pp.253-264
    • /
    • 2012
  • In the northwestern Pacific, spawning of the common squid, Todarodes pacificus, occurs at continental shelf and slope areas of 100-500 m, and the optimum temperature for the spawning and survival of paralarvae is assumed to be $18-23^{\circ}C$. To predict the spawning ground of Todarodes pacificus under future climate conditions, we simulated the present and future ocean circulations, using an East Asia regional ocean model (Modular Ocean Model, MOM version3), projected by two different global climate models (MPI_echam5, MIROC_hires), under an IPCC SRES A1B emission scenario. Mean climate states for 1990-1999 and 2030-2039 from 20th and 21th Century Climate Change model simulation (from the IPCC 4th Assessment Report) were used as surface conditions for simulations, and we examined changes in spawning ground between the 1990s and 2030s. The results revealed that the distribution of spawning ground in the 2030s in both climate models shifted northward in the East China Sea and East Sea, for both autumn and winter populations, compared to that of the 1990s. Also, the spawning area (with $1/6^{\circ}{\times}1/6^{\circ}$ grid) in the 2030s of the autumn and winter populations will decline by 11.6% (MPI_echam5) to 30.8% (MIROC_hires) and 3.0% (MPI_echam5) to 18.2% (MIROC_hires), respectively, from those of the 1990s.

Evaluation of GPM IMERG Applicability Using SPI based Satellite Precipitation (SPI를 활용한 GPM IMERG 자료의 적용성 평가)

  • Jang, Sangmin;Rhee, Jinyoung;Yoon, Sunkwon;Lee, Taehwa;Park, Kyungwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.29-39
    • /
    • 2017
  • In this study, the GPM (Global Precipitation Mission) IMERG (Integrated Multi-satellitE retrievals for GPM) rainfall data was verified and evaluated using ground AWS (Automated Weather Station) and radar in order to investigate the availability of GPM IMERG rainfall data. The SPI (Standardized Precipitation Index) was calculated based on the GPM IMERG data and also compared with the results obtained from the ground observation data for the Hoengseong Dam and Yongdam Dam areas. For the radar data, 1.5 km CAPPI rainfall data with a resolution of 10 km and 30 minutes was generated by applying the Z-R relationship ($Z=200R^{1.6}$) and used for accuracy verification. In order to calculate the SPI, PERSIANN_CDR and TRMM 3B42 were used for the period prior to the GPM IMERG data availability range. As a result of latency verification, it was confirmed that the performance is relatively higher than that of the early run mode in the late run mode. The GPM IMERG rainfall data has a high accuracy for 20 mm/h or more rainfall as a result of the comparison with the ground rainfall data. The analysis of the time scale of the SPI based on GPM IMERG and changes in normal annual precipitation adequately showed the effect of short term rainfall cases on local drought relief. In addition, the correlation coefficient and the determination coefficient were 0.83, 0.914, 0.689 and 0.835, respectively, between the SPI based GPM IMERG and the ground observation data. Therefore, it can be used as a predictive factor through the time series prediction model. We confirmed the hydrological utilization and the possibility of real time drought monitoring using SPI based on GPM IMERG rainfall, even though results presented in this study were limited to some rainfall cases.

Uncertainty of Simulated Paddy Rice Yield using LARS-WG Derived Climate Data in the Geumho River Basin, Korea (LARS-WG 기후자료를 이용한 금호강 유역 모의발생 벼 생산량의 불확실성)

  • Nkomozepi, Temba D.;Chung, Sang-Ok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.55-63
    • /
    • 2013
  • This study investigates the trends and uncertainty of the impacts of climate change on paddy rice production in the Geumho river basin. The Long Ashton Research Station stochastic Weather Generator (LARS-WG) was used to derive future climate data for the Geumho river basin from 15 General Circulation models (GCMs) for 3 Special Report on Emissions Scenarios (SRES) (A2, A1B and B1) included in the Intergovernmental Panel on Climate Change (IPCC) 4th assessment report. The Food and Agricultural Organization (FAO) AquaCrop, a water-driven crop model, was statistically calibrated for the 1982 to 2010 climate. The index of agreement (IoA), prediction efficiency ($R^2$), percent bias (PBIAS), root mean square error (RMSE) and a visual technique were used to evaluate the adjusted AquaCrop simulated yield values. The adjusted simulated yields showed RMSE, NSE, IoA and PBIAS of 0.40, 0.26, 0.76 and 0.59 respectively. The 5, 9 and 15 year central moving averages showed $R^2$ of 0.78, 0.90 and 0.96 respectively after adjustment. AquaCrop was run for the 2020s (2011-2030), 2050s (2046-2065) and 2090s (2080-2099). Climate change projections for Geumho river basin generally indicate a hotter and wetter future climate with maximum increase in the annual temperature of $4.5^{\circ}C$ in the 2090s A1B, as well as maximum increase in the rainfall of 45 % in the 2090s A2. The means (and ranges) of paddy rice yields are projected to increase by 21 % (17-25 %), 34 % (27-42 %) and 43 % (31-54 %) for the 2020s, 2050s and 2090s, respectively. The A1B shows the largest rice yield uncertainty in all time slices with standard deviation of 0.148, 0.189 and $0.173t{\cdot}ha^{-1}$ for the 2020s, 2050s and 2090s, respectively.

Projected Future Extreme Droughts Based on CMIP6 GCMs under SSP Scenarios (SSP 시나리오에 따른 CMIP6 GCM 기반 미래 극한 가뭄 전망)

  • Kim, Song-Hyun;Nam, Won-Ho;Jeon, Min-Gi;Hong, Eun-Mi;Oh, Chansung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.4
    • /
    • pp.1-15
    • /
    • 2024
  • In recent years, climate change has been responsible for unusual weather patterns on a global scale. Droughts, natural disasters triggered by insufficient rainfall, can inflict significant social and economic consequences on the entire agricultural sector due to their widespread occurrence and the challenge in accurately predicting their onset. The frequency of drought occurrences in South Korea has been rapidly increasing since 2000, with notably severe droughts hitting regions such as Incheon, Gyeonggi, Gangwon, Chungbuk, and Gyeongbuk in 2015, resulting in significant agricultural and social damage. To prepare for future drought occurrences resulting from climate change, it is essential to develop long-term drought predictions and implement corresponding measures for areas prone to drought. The Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment Report outlines a climate change scenario under the Shared Socioeconomic Pathways (SSPs), which integrates projected future socio-economic changes and climate change mitigation efforts derived from the Coupled Model Intercomparison Project 6 (CMIP6). SSPs encompass a range of factors including demographics, economic development, ecosystems, institutions, technological advancements, and policy frameworks. In this study, various drought indices were calculated using SSP scenarios derived from 18 CMIP6 global climate models. The SSP5-8.5 scenario was employed as the climate change scenario, and meteorological drought indices such as the Standardized Precipitation Index (SPI), Self-Calibrating Effective Drought Index (scEDI), and Standardized Precipitation Evapotranspiration Index (SPEI) were utilized to analyze the prediction and variability of future drought occurrences in South Korea.

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.