• Title/Summary/Keyword: Cleaning time

Search Result 618, Processing Time 0.029 seconds

Design and Development of Fluidized Bed Cleaning System for on Heat Treatment Parts (I) - Design and Development the Experimental Fluidized Bed Cleaner and Experiments on its Cleaning Efficiency - (유동층을 이용한 열처리부품의 세정 시스템 설계 및 개발 (I) -유동층 이용 세정 실험장치 설계, 개발 및 실험 -)

  • Kim C.S.;Kim K.D.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.4 s.117
    • /
    • pp.376-384
    • /
    • 2006
  • This study was conducted to perform for comparative analysis of the cleaning efficiency on 3 kinds of cleaning liquid state, 3 steps of cleaning temperature $(45^{\circ}C,\;60^{\circ}C,\;70^{\circ}C,\;)$ and 6 steps of cleaning time (2.5, 5, 7.5, 10, 12.5, 15 minute). 3 kinds of cleaning liquid state are the non fluidized bed, liquid fluidized bed and liquid/solid fluidized bed. UV spectrophotometer was used in estimation of cleaning efficiency, which it is experimental equipment using the absorptiometric analysis method. Cleaning efficiency by cleaning time was increase from 2.5 minutes to 15 minutes, liquid/siolid fluidized bed was indicated the highest cleaning efficiency among the 3 kinds of cleaning liquid state and $70^{\circ}C$ of cleaning temperature at liquid/solid fluidized bed was indicated the highest cleaning efficiency as 98% among the 3 steps of cleaning temperature.

Post Sliced Cleaning of Silicon Wafers using Ozone and Ultrasound (오존과 초음파를 이용한 실리콘 웨이퍼의 Post Sliced Cleaning)

  • Choi, Eun-Suck;Bae, So-Ik
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.75-79
    • /
    • 2006
  • The effect of ozone and/or ultrasound treatments on the efficiency of slurry removal in post sliced cleaning (PSC) of silicon ingot was studied. Efficiency of slurry removal was evaluated as functions of time, temperature and surfactant with DOE (Design of Experiment) method. Residual slurries were observed on the wafer surface in case of cleaning by ozone or ultrasound separately. However, a clean wafer surface was appeared when cleaned with ozone and ultrasound simultaneously. It has found that cleaning time was the main effect among temperature, time and surfactant. Elevated temperature, addition of surfactant and high ozone concentration helped to accelerate efficient removal of slurry. The improvement of removal efficiency seems to be related to the formation of more active OH radicals. The highly cleaned surface was achieved at 10 wt% ozone, 1 min and 10 vol% surfactant with ultrasound. Application of ozone and ultrasound might be a useful method for PSC process in wafer cleaning.

Evaluation on Chemical Cleaning Efficiency of Fouled in $1,000,000m^3/day$ Sea Water Reverse Osmosis Membrane Plant (해수용 역삼투막을 이용한 $1,000,000m^3/day$ 규모의 플랜트에서 오염된 막의 화학세정 효율 평가)

  • Park, Jun-Young;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Eui-Jong;Lee, Yong-Soo;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon and major obstacle in the economic and efficient operation under sea water reverse osmosis (SWRO). When fouling occurs on the membrane surface, the permeate quantity and quality decrease, the trans-membrane pressure (TMP) and operation costs increase, and the membrane may be damaged. Therefore, chemical cleaning process is important to prevent permeate flow from decreasing in RO membrane filtration process. This study focused on proper chemical cleaning condition for Shuaibah RO plant in Saudi Arabia. Several chemical agents were used for chemical cleaning at different contact time and concentrations of chemicals. Also autopsy analysis was performed using LOI, FT-IR, FEEM, SEM and EDX for assessment of fouling. Specially, FEEM analysis method was thought as analyzing and evaluating tool available for selection of the first applied chemical cleaning dose to predict potential organic fouling. Also, cleaning time should be considered by the condition of RO membrane process since the cleaning time depends on the membrane fouling rate. If the fouling exceeds chemical cleaning guideline, to perfectly remove the fouling, certainly, the chemical cleaning is increased with membrane fouling rate influenced by raw water properties, pre-treatment condition and the point of the chemical cleaning operation time. Also choice of cleaning chemicals applied firstly is important.

A Study on Chemical Cleaning of Electrolytic Facilities with Sea Water (해수전해설비의 화학세정 최적화 방안에 관한 연구)

  • 이한철;이창우;현성호
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.114-119
    • /
    • 1999
  • When NaOCl was generated and put into sea-water cooling machine in order to overcome the biological hindrances against sea-water cooling machine, it was converted into metallic ion, particularly Ca and Mg, as a hydrate in sea-water and is to stick to electrolyte as a side reaction. This phenomena make the distance between the electrolytes narrow to decrease the flow rate, which induces the local vortex flow which erodes the pole plate. Moreover, this increases the resistance of the electrolyte as well as voltage to decrease the electrolytic efficiency, which has curtailed a chlorine yield and caused a pole plate cut. We are able to overcome these problems by chemical cleaning and intend to extend the life-time of electrolyte and to increase output of the sea-water electrolysis facilities by studying optimal policy regarding chemical cleaning of electrolytic cell. Cleaning time of electrolytic facilities is determined when both increase in electrolytic efficiency and decrease in pole-plate voltage are 10%. At this time as operating current of electrolytic facilities is high, operating time is diminished. Whereas, parameter of end point determination according to cleaning is Mg ionic concentration in solution. When we use Cleaner as a 7wt% HCl, cleaning time is about 80min proper. We are able to maintain pole plate performance by protecting against pole plate cut by means of electrolytic by-product, improve operating rate of facilities, and cut down on maintenance expenditure after acidic cleaning.

  • PDF

Effect of Road Sweeping on the Abatement of Runoff Pollution Loads from in the Highway (고속도로 노면 청소에 따른 강우시 유출오염부하 저감 효과 분석)

  • Kang, Heeman;Lee, Doojin;Yoon, Hunsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.6
    • /
    • pp.851-860
    • /
    • 2012
  • In this study, to evaluate the abatement of runoff pollution loads by the road sweeping(cleaning), various investigations are implemented at the sample area of the highway. As the results of evaluating the removal efficiency of pollutants along road cleaning, TSS showed about 78 % of the removal efficiency and COD showed 49 % of removal efficiency through the operation of cleaning vehicle of vacuum suction method. In case of TN and TP, they showed the relatively-lower removal efficiency by 30~35 %. TSS removal efficiency along the number of cleaning appeared about 60 % in case of one time of cleaning and the additional removal effect did not appear though the number of cleaning increased to two times. With running speed of cleaning vehicle, TSS removal ratio is lessened from 60 % to 20 % when cleaning vehicle speed up to 20 km/hr from 6 km/hr. It seems that the reasons why the removal efficiencies are inversely proportional to its speed are related to the lower vacuum efficiencies and the disturbed particles on the road. In the pollutant build-up analysis, it is showed that it takes more time to the critical pollutant build-up in the shoulder than the center of the road. It is also showed that the proper cleaning cycle is recommended as 4~6 dry weather days without rainfall events.

Path Planning for Cleaning Robots Using Virtual Map (가상지도를 이용한 청소로봇 경로계획)

  • Kim, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.11
    • /
    • pp.31-40
    • /
    • 2009
  • The most common cleaning methods of cleaning robot can be divided into two categories: the random and the boustrophedon method. A cleaning robot using the random method moves straight until it bumps into an obstacle. If it collides with an obstacle, the cleaning robot turns a specific angle and continues moving straight. Therefore, the random method often tends to clean the already clean area repeatedly. In addition, it takes a long time to complete cleaning. A cleaning robot using the boustrophedon method moves straight until it collides with an obstacle. If it meets an obstacle, the cleaning robot moves to the next uncleaned space through turning and moving ahead. when resuming cleaning from the new region, a cleaning robot moves in the direction opposite to the direction of the previous cleaning. Because the boustrophedon method cleans a cleaning space more densely, its performance is excellent in an obstacle-free space or a small space. However, In a space with obstacles or a complex structure, it takes a long time to complete the cleaning work. Cleaning should be systematically approached with a good understanding of the work area. The virtual map-based cleaning robot proposed in this paper cleaned a work space efficiently. The efficiency of the proposed method was measured through simulation.

A Study on Wettability and Defects Behavior of Flow-soldered Joint using Low Residue Flux (저잔사 플럭스를 사용한 플로우 솔더링부의 젖음성 및 결함거동에 관한 연구)

  • 최명기;이창열;정재필;서창제;신영의
    • Journal of Welding and Joining
    • /
    • v.16 no.6
    • /
    • pp.77-85
    • /
    • 1998
  • Effects of non-cleaning and cleaning fluxes on the wetting properties and defects at flow soldered joints were investigated. Non-cleaning flux (R-type of 3.3% solid content) and cleaning flux (RMA-type of 15% solid content) were used. Wetting test was accomplished by wetting balance method with changing surface state of wetting specimen, CU. Sn-37%Pb solder was used for wetting test and flow soldering. As experimental results, the wetting time for vertical force from the surface tension being zero was mainly affected by surface state of the wetting specimen. Non-cleaning flux had a good wettability compared with cleaning flux. In case of non-cleaning flux, conveyor speed had a great affection to defects of bridge, icicle, and poor solder.

  • PDF

Practical Intelligent Cleaning Robot Algorithm Based on Grouping in Complex Layout Space (복잡한 공간에서 그룹화 기반의 실용적 지능형 청소 로봇 알고리즘)

  • Jo Jae-Wook;Noh Sam-H.;Jeon Heung-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.5
    • /
    • pp.489-496
    • /
    • 2006
  • The random-based cleaning algorithm is a simple algorithm widely used in commercial vacuum cleaning robots. This algorithm has two limitations, that is, cleaning takes a long time and there is no guarantee that the cleaning will cover the whole cleaning area. This has lead to customer dissatisfaction. Thus, in recent years, many intelligent cleaning algorithms that takes into consideration information gathered from the cleaning area environment have been proposed. The plowing-based algorithm, which is the most efficient algorithm known to date when there are no obstacles in the cleaning area, has a deficiency that when obstacle prevail, its performance is not guaranteed. In this paper, we propose the Group-k algorithm that is efficient for that situation, that is, when obstacle prevail. The goal is not to complete the cleaning as soon as possible, but to clean the majority of the cleaning area as fast as possible. The motivation behind this is that areas close to obstacles are usually difficult for robots to handle, and hence, many require human assistance anyway In our approach, obstacles are grouped by the complexity of the obstacles, which we refer to as 'complex rank', and then decide the cleaning route based on this complex rank. Results from our simulation-based experiments show that although the cleaning completion time takes longer than the plowing-based algorithm, the Group-k algorithm cleans the majority of the cleaning area faster than the plowing algorithm.

Efficient Robot Cleaning Algorithm based on Set Cover Algorithm (셋 커버 알고리즘을 이용한 효율적인 로봇 청소 알고리즘)

  • Jeon, Heung-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 2008
  • In this paper, we propose a new robot cleaning algorithm, which we call SetClean. The new algorithm cleans from the most less complex area. Sometimes, when the cleaning completion time can be longer or can not be estimated, cleaning larger area first is better than optimizing the whole time for cleaning. To do this, SetClean algorithm divides the whole area into cleanable sub-areas using Set Cover algorithm and cleans the area in the order of high efficiency that maximize the cleanable area per unit time. SetClean algorithm decides the navigation flow by considering not only the size of the area but also the distance from the current robot location to the area to be cleaned and the delay time caused by the number of turns within the area. The experimental results show the mechanism and performance of the SetClean algorithm.

  • PDF

A Study on Ozone Micro Bubble Effects for Solar Cell Wafer Cleaning (신개념 태양전지 세정용 오존마이크로 버블에 관한 연구)

  • Yoon, Jong-Kuk;Koo, Kyung-Wan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.94-98
    • /
    • 2012
  • The behavior of ozone micro bubble cleaning system was investigated to evaluate the solution as a new method of solar cell wafer cleaning in comparison with former conventional RCA cleaning. We have developed the ozone dissolution system in the ozonated water for more efficient cleaning conditions. The optimized cleaning conditions for solar cell wafer process were 10 ppm of ozone concentration and 12 minutes in cleaning periods, respectively. We have confirmed the cleaning reliability and cell efficiencies after ozone micro bubble cleaning. Using this new cleaning technology, it was possible to obtain higher efficiency, higher productivity, and fast tact time for applying cleaning in the fields on bare ingot wafer, LED wafers as well as the solar cell wafer.