Abstract
The random-based cleaning algorithm is a simple algorithm widely used in commercial vacuum cleaning robots. This algorithm has two limitations, that is, cleaning takes a long time and there is no guarantee that the cleaning will cover the whole cleaning area. This has lead to customer dissatisfaction. Thus, in recent years, many intelligent cleaning algorithms that takes into consideration information gathered from the cleaning area environment have been proposed. The plowing-based algorithm, which is the most efficient algorithm known to date when there are no obstacles in the cleaning area, has a deficiency that when obstacle prevail, its performance is not guaranteed. In this paper, we propose the Group-k algorithm that is efficient for that situation, that is, when obstacle prevail. The goal is not to complete the cleaning as soon as possible, but to clean the majority of the cleaning area as fast as possible. The motivation behind this is that areas close to obstacles are usually difficult for robots to handle, and hence, many require human assistance anyway In our approach, obstacles are grouped by the complexity of the obstacles, which we refer to as 'complex rank', and then decide the cleaning route based on this complex rank. Results from our simulation-based experiments show that although the cleaning completion time takes longer than the plowing-based algorithm, the Group-k algorithm cleans the majority of the cleaning area faster than the plowing algorithm.