• Title/Summary/Keyword: Cleaning Device

Search Result 164, Processing Time 0.036 seconds

Critical Cleaning Requirements for Back End Wafer Bumping Processes

  • Bixenman, Mike
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As integrated circuits become more complex, the number of I/O connections per chip grow. Conventional wire-bonding, lead-frame mounting techniques are unable to keep up. The space saved by shrinking die size is lost when the die is packaged in a huge device with hundreds of leads. The solution is bumps; gold, conductive adhesive, but most importantly solder bumps. Virtually every semiconductor manufacturer in the world is using or planning to use bump technology for their larger and more complex devices. Several wafer-bumping processes used in the manufacture of bumped wafer. Some of the more popular techniques are evaporative, stencil or screen printing, electroplating, electroless nickel, solder jetting, stud humping, decal transfer, punch and die, solder injection or extrusion, tacky dot process and ball placement. This paper will discuss the process steps for bumping wafers using these techniques. Critical cleaning is a requirement for each of these processes. Key contaminants that require removal are photoresist and flux residue. Removal of these contaminants requires wet processes, which will not attack, wafer metallization or passivation. Research has focused on enhanced cleaning solutions that meet this critical cleaning requirement. Process parameters defining time, temperature, solvency and impingement energy required to solvate and remove residues from bumped wafers will be presented herein.

  • PDF

Study of the effect of cleaning the intake manifold on common rail diesel engine and exhaust gases (커먼레일 디젤엔진의 흡기 매니폴더 클리닝이 배기가스에 미치는 영향에 관한 연구)

  • Kim, Tae-Jung;Hong, Sung-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.10
    • /
    • pp.5912-5918
    • /
    • 2014
  • Owing to highly developed industries and the use of fossil fuels, environmental problems becoming becoming pressing issues globally. Therefore, a study of automobile exhaust is urgently needed. Generally, air is sucked into the engine through the intake manifold. The aims of this study were to reduce the exhaust from used cars and increase the output by removing carbon deposits, which are considered a reason for the increasing exhaust and reduction of output, and the reduction of exhaust, variation of output and stability of idle speed were analyzed. The formation of carbon deposits within the suction manifold was investigated through a test device (KD147). In the intake manifold, the exhaust cleaning effect was confirmed.

A fouling mitigation device for a wastewater heat recovery heat pump system using a bubbling fluidized bed with cleaning sponge balls (버블 유동층과 세정 볼을 이용한 폐수 열원 히트펌프 시스템 증발기의 관 외측 오염 저감 장치에 관한 연구)

  • Kim, Jong-Soo;Kim, Do-Bin;Kim, Jun-Ha
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.152-156
    • /
    • 2016
  • Wastewater heat recovery heat pump systems use heated wastewater from public baths or factories as the heat pump's heat source. Generally, this system uses a bare tube evaporator. In the heat transfer process from wastewater to refrigerant, thermal resistance is caused primarily by fouling deposits on the outside surface of tube. Fouling directly increases thermal resistance and decreases heat pump efficiency. Thus, it is desirable to eliminate fouling. In this study, we fabricated a fouling mitigation device using a bubbling fluidized bed with cleaning sponge balls in the wastewater bath. Experimental conditions were as follows: $20^{\circ}C$ cold-water temperature, $40^{\circ}C$ wastewater temperature, 100 L/h cold water flow rate, and $0.161m^2$ heat exchanger surface area. Experimental results showed that the thermal resistance of fouling decreased by 56% with the fluidized bed alone and by 86% with both the fluidized bed and cleaning sponge balls.

The Anti-scale Effect according to Array of Magnetic Device (자화장치의 배열별 스케일 생성 억제 효과)

  • Nam, Joongwoo;Han, Yunsu;Lee, Jonghwi;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.2
    • /
    • pp.13-17
    • /
    • 2013
  • Clogging phenomenon in drainage system is one of the important problems and this phenomenon would be bad effect to structure of tunnel, so it needs a remedy urgently. Recently, scale in drainage pipe is removed by water jet cleaning and other treatment. But these treatments need much cost and regular management. In this study, magnetic device was used to solve this problem and an effect of prohibiting scale in accordance with array of magnetic device was investigated. Analysis method was visual analysis and measuring weight of each pipes. As a result, interior top and out-bottom (CASE II) was the most effective array to prohibit scale. and interior left and right (CASE III), interior top and bottom (CASE I) was effective for prohibiting scale in order.

Study of sand blaster dry etched glass wafer surface for micro device package (샌드 블러스터로 건식 식각한 마이크로 소자 패키지용 유리 웨이퍼의 표면 연구)

  • Kim, Jong-Seok;Nam, Kwang-Woo;Choa, Sung-Hoon;Kwon, Jae-Hong;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.245-250
    • /
    • 2006
  • In this paper, glass cap wafer for MEMS device package is fabricated by using sand blaster dry etcher and Its surface is studied. The surface of dry etched glass is analyzed by using SEM, and many glass particles and micro cracks are observed. If these kind of particles were dropped from glass to the surface of device, It would make critical failure to the operation of device. So, several cleaning and etching methods are induced to remove these kinds of dormant failure mode and optimized condition is found out.

A Study on the Removal of Native Oxide on a Silicon Surface Using UV-Excited $F_2/H_2$ (UV-excited $F_2/H_2$를 이용한 실리콘 자연산화막 제거에 관한 연구)

  • Choi, S.H.;Choi, J.S.;Kim, S.I.;Koo, K.W.;Chun, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1528-1530
    • /
    • 1997
  • As device size shrinks, contamination will increasingly affect the reliability and yield of device. Therefore, contaminants must be removed from the surfaces of Si wafers prior to each process. But it becomes out increasingly difficult to clean silicon surfaces with finer patterns by the conventional wet treatment because of the viscosity and surface tension of solutions. Hence, a damage less dry cleaning process is needed for the silicon surfaces. For the removal of Si native oxide by UV-enhanced dry cleaning. $F_2$ gas and $F_2/H_2$ mixed gas were applied. As a result of analysis, UV-enhnaced $F_2/H_2$ treatment is more suitable than UV-enhanced $F_2$ treatment for removal of native oxide on the surfaces of Si wafers.

  • PDF

Development of Multi-purpose Marine Wastes Cleaning Systems for the Shallow Waters(PART II : System Development and Performance Evaluation) (천수용 다기능 해양폐기물 수거시스템 개발(PART II : 시스템 구성 및 성능시험))

  • Cho Yong-Jin;Moon Il-Sung;Shin Myung-Soo;Yu Jeong-Seok;Kang Chang-Gu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.2
    • /
    • pp.62-67
    • /
    • 2002
  • This paper - following 'Development of multi-purpose marine waste cleaning systems for the shallow waters (Part I : preliminary conceptual design)'- describes on the system development and the sea trial performance evaluation(Cho[2003]). The multi-functional seabed waste collecting system and the towing hook system were developed. The maximum working depth of these systems are 15 and 100 meters, respectively(MOMAF[2001]). For the multi-purpose use to collect the marine waste, this system contains floating waste collecting device for the waste on seawater and remained waste collecting device for the waste on seabed, while steel wire cutting system is added for higher efficiency In order to evaluate the system performance, the prototype of multi-functional system was constructed and the sea trial test at shallow water were carried out. As a result, this system operated well with safe and without any interaction so that the developed systems are practicable and applicable.

  • PDF

Micro-patterning for Biomimetic Functionalization of Surface

  • Jeon, Deok-Jin;Lee, Jun-Yeong;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.272-273
    • /
    • 2013
  • Some living thingsuse micro- or nano- structures for living in nature. Scientists and engineers made efforts to mimic them, and they succeeded in making new types of applications. They used 'Namib desert beetle' to self-filling device by moisture harvesting and 'lotus leaf' to self-cleaning device by water repelling. 'Namib desert beetle' and lotus leaf have micro-patterns on their surface, which consists of hydrophobic or hydrophilic materials [1]. Moreover, micro-patterns on the surface make self-filling or self-cleaning property enhanced because of the surface roughness. Surface roughness enhances wettability [2]. Micro-pattern is a significant factor to make the surface be functional, so we want to make new types of functional surface by micro-patterning. In this work,we make several functional micro-patterns (radial, line, and dot arrays) using maskless lithography and analyze the characteristics of each micro-pattern. In order to analyze and understand surface characteristics, micro-patterns with varying sizes are investigated. All experiments are proceeded on mr-DWL5 photo resists coated on silicon wafers in same condition. All the experiments have demonstrated good performances about hydrophobic or hydrophilic property corresponding to their material and structural combinations. In radial micro-pattern, although the surface is flat, water drops on hydrophilic radial pattern can be convergent to a middle point and water drops on hydrophobic radial pattern can be divergent from the middle point. In line array micro-pattern, water drops can roll off along only one direction in parallel with the line arrays. Such phenomena might be mainly caused by the local change of surface roughness. From these results, controlling the movement and direction of water drops is made feasible without introducing a slope, which can potentially be used for new types of applications.

  • PDF

Dry cleaning for metallic contaminants removal after the chemical mechanical polishing (CMP) process (Chemical Mechnical Polishing(CMP) 공정후의 금속오염의 제거를 위한 건식세정)

  • 전부용;이종무
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.2
    • /
    • pp.102-109
    • /
    • 2000
  • It is difficult to meet the cleanliness requirement of $10^{10}/\textrm{cm}^2$ for the giga level device fabrication with mechanical cleaning techniques like scrubbing which is widely used to remove the particles generated during Chemical Mechanical Polishing (CMP) processes. Therefore, the second cleaning process is needed to remove metallic contaminants which were not completely removed during the mechanical cleaning process. In this paper the experimental results for the removal of the metallic contaminants existing on the wafer surface using remote plasma $H_2$ cleaning and UV/$O_3$ cleaning techniques are reported. In the remote plasma $H_2$ cleaning the efficiency of contaminants removal increases with decreasing the plasma exposure time and increasing the rf-power. Also the optimum process conditions for the removal of K, Fe and Cu impurities which are easily found on the wafer surface after CMP processes are the plasma exposure time of 1min and the rf-power of 100 W. The surface roughness decreased by 30-50 % after remote plasma $H_2$ cleaning. On the other hand, the highest efficiency of K, Fe and Cu impurities removal was achieved for the UV exposure time of 30 sec. The removal mechanism of the metallic contaminants like K, Fe and Cu in the remote plasma $H_2$ and the UV/$O_3$ cleaning processes is as follows: the metal atoms are lifted off by $SiO^*$ when the $SiO^*$is evaporated after the chemical $SiO_2$ formed under the metal atoms reacts with $H^+ \; and\; e^-$ to form $SiO^*$.

  • PDF

Experimental study on the optimum pulse jet cleaning conditions of a rectangular bag-filter system (사각형 여과집진기 충격기류 시스템의 최적탈진조건에 관한 실험적 연구)

  • Piao, Cheng Xu;Kim, Tae Hyeung;Li, Xiao Yu;Ha, Hyun Chul;Jung, Jae Hun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.18 no.3
    • /
    • pp.189-203
    • /
    • 2008
  • Cylindrical bag filter system with pulse jet cleaning has been the most common device to control particle laden exhaust gas from the various industrial processes. But, it has many shortcomings due to particle reattachment and frequent bag rupture. In recent years, rectangular type bag filter system has been developed to overcome the problems associated with the cylindrical system. However, not many studies about the rectangular system were not done, compared to the cylindrical system. In this study, the optimum pulse jet cleaning conditions were thus tested by the series of experiments. The factors tested in this study are pulse distance, pulse pressure, pulse duration, the number of holes for pulsing and bag materials. A single bag ($1,500mmL{\times}50mmW{\times}300mmH$) system and a multi-bags (3 bags in a row) were tested separately. The highest removal efficiency with a single bag system was found at the conditions with pulse distance of 10cm, pulse pressure of $3kg/cm^2$, pulse duration of 0.3s, pulse jet number of 6 and Polyester bag. With the multi-bags system, the best cleaning conditions were found at the bag interval of 20cm with the simultaneous pulsing and the bag interval of 15cm with the serial pulsing.