• Title/Summary/Keyword: Clay material

Search Result 569, Processing Time 0.026 seconds

Fabrication of poly(ethylene oxide)/clay nanocomposites using supercritical fluid process (초임계 공정을 이용한 폴리에틸렌옥사이드/클레이 나노복합체 제조)

  • Kim, Yong-Ryeol;Jeong, Hyeon-Taek
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.143-150
    • /
    • 2014
  • Recently, supercritical fluid process has been widely used in material synthesis and processing due to their remarkable properties such as high diffusivity, low viscosity, and low surface tension. Supercritical carbon dioxide is the most attractive solvent owing to their characteristics including non-toxic, non-flammable, chemically inert, and also it has moderate critical temperature and critical pressure. In addition, supercritical carbon dioxide would dissolve many small organic molecules and most polymers. In this study, we have prepared the poly (ethylene oxide)/clay nanocomposites using supercritical fluid as a carbon dioxide. Commercialized Cloisites-15A and Cloisites-30B used in this study, which are modified with quaternary ammonium salts. The nanocomposites of polymer/clay were characterized by XRD, TGA and DSC. Poly (ethylene oxide)/clay nanocomposites by supercritical fluid show higher thermal stability than nanocomposites prepared by melt process. In addition, supercritical fluid process would be increased dispersibility of the nanoclay in the matrix.

Stabilization of oily contaminated clay soils using new materials: Micro and macro structural investigation

  • Ghiyas, Seyed Mohsen Roshan;Bagheripour, Mohammad Hosein
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.207-220
    • /
    • 2020
  • Clay soils have a big potential to become contaminated with the oil derivatives because they cover a vast area of the earth. The oil derivatives diffusion in the soil lead to soil contamination and changes the physical and mechanical properties of the soil specially clay soils. Soil stabilization by using new material is very important for geotechnical engineers in order to improve the engineering properties of the soil. The main subjects of this research are a- to investigate the effect of the cement and epoxy resin mixtures on the stabilization and on the mechanical parameters as well as the microstructural properties of clay soils contaminated with gasoline and kerosene, b- study on the phenomenon of clay concrete development. Practical engineering indexes such as Unconfined Compressive Strength (UCS), elastic modulus, toughness, elastic and plastic strains are all obtained during the course of experiments and are used to determine the optimum amount of additives (cement and epoxy resin) to reach a practical stabilization method. Microstructural tests were also conducted on the specimens to study the changes in the nature and texture of the soil. Results obtained indicated that by adding epoxy resin to the contaminated soil specimens, the strength and deformational properties are increased from 100 to 1500 times as that of original soils. Further, the UCS of some stabilized specimens reached 40 MPa which exceeded the strength of normal concrete. It is interesting to note that, in contrast to the normal concrete, the strength and deformational properties of such stabilized specimens (including UCS, toughness and strain at failure) are simultaneously increased which further indicate on suitability and applicability of the current stabilization method. It was also observed that increasing cement additive to the soil has negligible effect on the contaminated soils stabilized by epoxy resin. In addition, the epoxy resin showed a very good and satisfactory workability for the weakest and the most sensitive soils contaminated with oil derivatives.

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Control of physical properties and characteristics of soil through combination of ingredients of clay (태토 성분조합을 통한 도자기용 흙의 물성조절 및 특성변화)

  • Kim, Duhyeon;Lee, Haesoon;Kim, Jihye;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.35-50
    • /
    • 2021
  • This study analyzed the basic properties of soil material gathered around Maegok-dong in Gwangju, Gyeonggi-do Province (hereafter, "Maegok soil") and the physicochemical changes in the Maegok soil resulting from the addition of other clay materials in order to present scientific information about the properties of clay available for pottery production. Gravel, coarse sand, and fine sand account for 73% of the total mass of the Maegok soil. Therefore, it required refinement through sifting in order to serve in pottery clay. After sifting, the amount of silt and clay in the soil increased to 95% of the total mass. However, since it lacked plasticity and viscosity, buncheong soil was added. When it was mixed with bungcheong soil at a ratio of 7:3, Maegok soil improved as pottery clay as its viscosity increased, demonstrating compositional properties appropriate for ceramic clay even after firing. Further, its water-absorption rate was decreased to 0.40. This means that soil gathered from anywhere can be used for pottery-making by refining its original properties and through mixture with clay with specific components which help the pottery maintain its shape even after firing.

Analysis on Physical and Mechanical Properties of Fault Materials using Laboratory Tests (실내시험을 통한 단층물질의 물리·역학적 특성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok;Chae, Byung-Gon
    • The Journal of Engineering Geology
    • /
    • v.27 no.1
    • /
    • pp.91-101
    • /
    • 2017
  • Fault materials has various properties depending on their areas, rock types, and components because they are formed by heterogeneous and complicated mechanisms. In this study, to understand the physical and mechanical properties of fault materials, 109 fault materials distributed in South Korea were collected to conduct various laboratory tests with them and analyze their physical and mechanical properties (unit weight, specific gravity, porosity, gravel content, silt/clay content, clay mineral content, friction angle, and cohesion) according to areas, rock types, and components. As for the physical and mechanical properties by rock type, gneiss shows the highest medians in the unit weight ($17.1kN/m^3$) and specific gravity (2.73), granite does so in the porosity (45.5%), schist does so in the gravel content (20.0 wt.%) and cohesion (38.1 kPa), and phyllite does so in the silt/clay content (54.4 wt.%), clay mineral content (30.1 wt.%), and friction angle ($38.2^{\circ}$). With regard to the physical and mechanical properties by component, fault gouge was shown to have lower values than cataclasite and damage zones in all factors other than porosity and silt/clay contents.

Study on the Characteristics of Materials and Production Techniques of Clay Seated Vairocana Buddha Triad of Seonunsa Temple, Gochang (보물 제1752호 고창 선운사 소조비로자나삼불좌상 재질특성 및 제작기법 연구(1): 소조불상 주요 구성재료 분석)

  • Lee, Hwa Soo;Lee, Han Hyoung;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.562-577
    • /
    • 2020
  • In this study, to conserve the clay seated Vairocana Buddha triad in Seonunsa temple, Gochang (Treasure 1752), the primary materials employed for creating the clay Buddha statues were scientifically analyzed. By analyzing the soil layer constituting the Buddha statues, it is observed that the said layer comprises sand having particle size greater than that of medium sand and soil having particle size smaller than that of fine sand, which were used in a ratio of 7:3, along with the bast fibers of paper mulberry (Broussonetia kazinoki). Hence, the aforementioned soil layer is composed of a mixture of sand and weathered soil, along with bast fibers to prevent scattering. By analyzing the tree species, it is found that the wooden materials constituting the bottom board and the interior of Buddha's sleeves of the Amitabha Buddha statue, Vairocana Buddha statue, and Medicine Buddha statue are hard pines (Pinus spp.). Additionally, three layers are found in the cross section of the gold layer. Furthermore, each of the hair sections of the Buddha statues is composed of earthy materials such as quartz, albite, microcline, mica, and magnetite, and the hair surface was painted by incorporating black materials containing magnetite.

Study on Application of Filling Material for Reinforcement of Soil Murals in Buddhist Temple (토벽화 균열부 보강에 사용되는 충전제 적용 연구)

  • Lee, Kyeong Min;Lee, Hwa Soo;Han, Kyeong Soon
    • Journal of Conservation Science
    • /
    • v.29 no.4
    • /
    • pp.395-406
    • /
    • 2013
  • The conservation of damaged object should be restored by the similar material with the original and they have to reversibility as possible as. The characteristics of Buddhist mural paintings composed of clay are with soft material. So far, there have been a number of researches done on filling material that reinforces cracks and exfoliation of mural painting. Based on the application of traditional materials, it was found that they are appropriate to various applications. However, only based on those research results, there are some constraints to the application in the field. In addition, there has been only a few researches done on physical characteristics of filling materials. A major issue is that there is not any standard established on various mixing ratio, which is required for treatment of mural painting. This study was carried out to understand the physical characteristics of filling materials on clay mural painting. The 1st test was conducted to analyze test specimen in twelve different conditions by varying soil mixing ratio and organic medium. The 2nd test was conducted to manufacture filling materials appropriate to the mural painting, based on the result of stable condition from the 1st test, and which was applied to treatment in field.

Defect Analysis According to the Types and Spatial Type of Block Pavement in Apartment Complex (아파트 단지 내 블록포장의 종류와 공간유형에 따른 하자분석)

  • Park, Geun-Hye;Jung, Sung-Gwan;Jang, Cheol-Kyu
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.3
    • /
    • pp.91-104
    • /
    • 2020
  • This study was conducted to analyze the characteristics of defects according to the type of block and spatial type by quantitatively examining defects occurring in block pavement in apartment complex. According to the research results, depending on the type of block, defects have occurred 1,394.3ea/100㎡ in interlocking paver blocks, 464.8ea/100㎡ in clay brick paver blocks, and 235.1ea/100㎡ in shot blasted paver blocks. By space type, the defects were occurred 1,576.0ea/100㎡ on the access road paved by interlocking paver blocks and the defects were found 1,139.6ea/100㎡ in interlocking paver blocks, 235.1ea/100㎡ in shot blasted paver blocks, and 797.1ea/100㎡ in clay brick paver blocks, on the sidewalk. Also the defects are occurred 455.6ea/100㎡ on the resting space and 403.2ea/100㎡ on the gym space paved by clay brick paver blocks. Through the size analysis of the defects in the block paver, in the case 'peeling', the largest volume of 2,539.0㎣ on the sidewalk paved with shot blasted paver blocks, and 'Subsidence' occurred at the widest area of 2,096.0㎠ on the sidewalk where interlocking paver block was constructed. The difference in defect occurrence according to the type of block is considered to be influenced by the block production process, and the space type is considered to be caused the difference in the occurrence of defects according to the cause of construction and the usage pattern of residents. This study conducted a survey on defects in block and analyzed the defect characteristic according to paver material and space type. Base on this, it is judged that it can be used as an efficient basic data for material replacement, improvement, paver planning and construction in the future.

Study on Material Characterization of Earthen Wall of Buddhist Mural Paintings in Joseon Dynasty (조선시대 사찰벽화 토벽체의 재질특성 연구)

  • Lee, Hwa Soo
    • Journal of Conservation Science
    • /
    • v.32 no.1
    • /
    • pp.75-88
    • /
    • 2016
  • In this study, 5 mural paintings in the Buddhist temples of Joseon era were researched for component analysis on the soil contained in the walls. The results of particle size analysis showed that the ratio of particle contents were different in each layer. In the finishing layer, the distribution of the middle sand fraction is higher than that of the middle layer. The results of XRD analysis showed that quartz, feldspar, and clay mineral are the main components of sand, suggesting similar mineral composition to that of ordinary soil component. It seems weathered rocks were used for construction of the walls. The main chemical components detected from EDX analysis were Si, Al, Fe, and K. Also the SEM images showed sand or clay sized minerals. In conclusion, the walls of the buddhist mural paintings in Joseon Dynasty had been constructed by using the loess, and had been produced by using mixture of clay and sand particles of different sizes for each layer. This study identified the characteristics of the materials and the manufacturing technologies used on the walls of mural paintings of Buddhist temples in Joseon era.

Assessment on Consolidation Material Function and Initial Stress for Soft Ground by Hydraulic Fill the at Southern Coast of Korea (남해안 준설매립 연약지반에 대한 압밀 물질함수 및 초기응력 산정)

  • Jeon, Je Sung;Koo, Ja Kap
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.136-145
    • /
    • 2011
  • For a massive project related to building national industrial complexes on a soft ground applied to PVD after dredging and hydraulic fill, laboratory tests were carried out using undisturbed sample taken from various depth. Piezocone penetration and dissipation tests were carried out to assess horizontal coefficient of consolidation and initial stress in field. The ground consists of upper dredged fill and lower original clay layer having both similar marine clays. It should be, however, considered as multi-layered soft ground having different initial void ratio, initial water content, initial effective stress, and permeability and compressibility with directions. To assess initial stress of those soft layers in which have different stress history related to consolidation, CPTu test results, especially excess pore water pressure, were analyzed. It allows to find out distribution of excess pore water pressure and initial stress inner original clay layer.