Browse > Article
http://dx.doi.org/10.9720/kseg.2017.1.91

Analysis on Physical and Mechanical Properties of Fault Materials using Laboratory Tests  

Moon, Seong-Woo (Department of Earth and Environmental Sciences, Chungbuk National University)
Yun, Hyun-Seok (Department of Earth and Environmental Sciences, Chungbuk National University)
Seo, Yong-Seok (Department of Earth and Environmental Sciences, Chungbuk National University)
Chae, Byung-Gon (Planning & Coordination Division, Korea Institute of Geoscience and Mineral Resources)
Publication Information
The Journal of Engineering Geology / v.27, no.1, 2017 , pp. 91-101 More about this Journal
Abstract
Fault materials has various properties depending on their areas, rock types, and components because they are formed by heterogeneous and complicated mechanisms. In this study, to understand the physical and mechanical properties of fault materials, 109 fault materials distributed in South Korea were collected to conduct various laboratory tests with them and analyze their physical and mechanical properties (unit weight, specific gravity, porosity, gravel content, silt/clay content, clay mineral content, friction angle, and cohesion) according to areas, rock types, and components. As for the physical and mechanical properties by rock type, gneiss shows the highest medians in the unit weight ($17.1kN/m^3$) and specific gravity (2.73), granite does so in the porosity (45.5%), schist does so in the gravel content (20.0 wt.%) and cohesion (38.1 kPa), and phyllite does so in the silt/clay content (54.4 wt.%), clay mineral content (30.1 wt.%), and friction angle ($38.2^{\circ}$). With regard to the physical and mechanical properties by component, fault gouge was shown to have lower values than cataclasite and damage zones in all factors other than porosity and silt/clay contents.
Keywords
fault material; region; rock type; components of fault material; physical and mechanical properties;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Yun, H. S., Moon, S. W., and Seo, Y. S., 2015, Setting of the range for shear strength of fault cores in Gyeongju and Ulsan using regression analysis, Journal of Korean Tunnelling and Underground Space Association, 17(2), 127-140 (in Korean with English abstract).   DOI
2 ASTM D 422-63, 2007, Standard test method for particle size analysis of soil, Annual Book of ASTM standard, 04.08.
3 ASTM D 854-10, 2010, Standard test methods for specific gravity of soil solids by water pycnometer, Annual Book of ASTM standard, 04.08.
4 ASTM D 2216-10, 2010, Standard test method for laboratory determination of water (moisture) content of soil and rock by mass, Annual Book of ASTM standard, 04.08.
5 Chung, H. Y., Kim, Y. G., Park, Y. J., and You, K. H., 2009, A study on analysis for the characteristics of fault zone at mica-schist for reinforcement of large-span tunnel, Tunnel and Underground Space, Journal of Korean Society for Rock Mechanics, 19(2), 132-145 (in Korean with English abstract).
6 Faulkner, D. R., Lewis, A.C., and Rutter, E. H., 2003, On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain, Tectonophysics, 367(3-4), 235-251.   DOI
7 Gudmundsson, A., Simmenes, T. H., Belinda, L., and Philipp, S. L., 2010, Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones, Journal of Structural Geology. 32(11), 1643-1655.   DOI
8 Haines, S. H., Kaproth, B., Marone, C., Saffer, D., and Pluijm, B., 2013, Shear zones in clay-rich fault gouge: a laboratory study of fabric development and evolution, Journal of Structural Geology, 51, 206-225.   DOI
9 Henderson, I. H. C., Ganerod, G. V., and Braathen, A., 2010, The relationship between particle characteristics and frictional strength in basal fault breccias: implications for fault-rock evolution and rockslide susceptibility, Tectonophysics, 486, 132-149.   DOI
10 ASTM D 3080-11, 2011, Standard test method for direct shear test of soils under consolidated drained conditions, Annual Book of ASTM standard, 04.08.
11 ASTM D 5607-08, 2008, Standard test method for performing laboratory direct shear strength tests of rock specimens under constant normal force, Annual Book of ASTM standard, 04.08.
12 Caine, J. S., Evans, J. P., and Forster, C. B., 1996, Fault zone architecture and permeability structure, Geology, 24(11), 1025-1028.   DOI
13 KS F 2309, 2009, Standard test method for amount of material in passing standard sieve 0.075 mm in soils (in Korean).
14 Heo, J. S., Jeong, J. H., and Kim, H. S., 2007, A review on the engineering characteristics and the investigation/testing method for the fault, Korean Geotechnical Society Fall National Conference, Busan, 147-159 (in Korean).
15 Heynekamp, M. R., Goodwin, L. B., Mozley, P. S., and Haneberg, W. C., 1999, Controls on fault-zone architecture in poorly lithified sediments, Rio Grande Rift, New Mexico: implications for fault-zone permeability and fluid flow. In: Haneberg, W. C., Mozley, P. S., Moore, J. C., and Goodwin, L. B. (Eds.), Faults and Subsurface Fluid Flow in the Shallow Crust, American Geophysical Union Geophysical Monograph, 113, 27-50.
16 Ikari, M. J., Saffer, D. M., and Marone, C., 2009, Frictional and hydrologic properties of clay-rich fault gouge, Journal of Geophysical Research, 114, B05409, doi:10.1029/2008JB006089.   DOI
17 Jang, B. A., Kim, T. H., and Jang, H. S., 2010, Characterization of the three dimensional roughness of rock joints and proposal of a modified shear strength criterion, The Journal of Engineering Geology, 20(3), 319-327 (in Korean with English abstract).
18 Kim, H. J., Lyu, Y. G., Kim, Y. G., and Lim, H. D., 2012, A study on optimization for location and type of dam considering the characteristic of large fault, Tunnel and Underground Space, Journal of Korean Society for Rock Mechanics, 22(4), 227-242 (in Korean with English abstract).
19 Kulatilake, P. H. S. W., Shou, G., Huang, T. H., and Morgan, R. M., 1995, New peak shear strength criteria for anisotropic rock joints, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 32(7), 673-697.   DOI
20 Lee, K. M., Lee, S. H., Seo, Y. S., Kim, C. Y., and Kim, K. S., 2007, Petro-mineralogical and mechanical property of fault material in phyllitic rock tunnel, The Journal of Engineering Geology, 17(3), 339-350 (in Korean with English abstract).
21 Sinha, U. N. and Singh, B., 2000, Testing of rock joints filled with gouge using a triaxial apparatus, International Journal of Rock Mechanics and Mining Sciences, 37, 963-981.   DOI
22 Moon, S. W., Yun, H. S., Kim, W. S., Na, J. H., Kim, C. Y., and Seo, Y. S., 2014, Correlation analysis between weight ratio and shear strength of fault materials using multiple regression analysis, The Journal of Engineering Geology, 24(3), 397-409 (in Korean with English abstract).   DOI
23 Seo, Y. S., Yun, H. S., Ban, J. D., and Lee, C. K., 2016, Mechanical properties of fault rocks in Korea, The Journal of Engineering Geology, 26(4), 571-581 (in Korean with English abstract).   DOI
24 Sibson, R. H., 1977, Fault rocks and fault mechanisms, Journal of the Geological Society, 133, 191-213.   DOI
25 Tukey J. W., 1970, Exploratory data analysis, Addison-wesley, preliminary edition.
26 Sulem, J., Vardoulakis, I., Ouffoukh, H., Boulon, M., and Hans, J., 2004, Experimental characterization of the thermo-poromechanical properties of the Aegion Fault gouge, C. R. Geoscience, 336, 455-466.   DOI
27 Takagi, H. and Kobayashi, K., 1996, Composite planar fabrics of fault gouges and mylonites-comparative petrofabrics, Journal of Geological Society of Japan, 102(3), 170-179 (in Japanese with English abstract).   DOI
28 Tesei, T., Collettini, C., Carpenter, B. M., Viti, C., and Marone, C., 2012, Frictional strength and healing behavior of phyllosilicate-rich faults, Journal of Geophysical Research, 117, B09402, doi:10.1029/2012JB009204.   DOI
29 Woo, I., 2012, Laboratory study of the shear characteristics of fault gouges around Mt. Gumjung, Busan, The Journal of Engineering Geology, 22(1), 113-121 (in Korean with English abstract).   DOI