• Title/Summary/Keyword: Classification Problem

Search Result 1,728, Processing Time 0.036 seconds

Crossmapping of Nursing Problem and Action Statements in Nursing Records with International Classification for Nursing practice (국제간호실무분류체계(ICNP)를 이용한 간호기록 분석 - 심장내과 간호기록을 중심으로 -)

  • Ryu, Dong-hee;Park, Hyeoun-Ae
    • Korean Journal of Adult Nursing
    • /
    • v.14 no.2
    • /
    • pp.165-173
    • /
    • 2002
  • Purpose: this study is to explore how useful ICNP nursing phenomena and actions classification is to describe the nursing problem and nursing action statements of nursing records. Method: The number of nursing phenomena statements found in this research were 323. Out of these 323, 222 statements can be fully classified, 62 statements can be partially classified, and 39 statements can not be classified at all by terms from the ICNP phenomena classification axis. Result: The number of nursing practice statements were 318, 252 of which can be fully classified, 63 statements can be partially classified, 3 statements cannot be classified at all by terms from the ICNP nursing action classification axis. Conclusions: In order to describe all the statements found in nursing records, not only new terms but also new axis need to be added to the ICNP.

  • PDF

Fault Classification in Phase-Locked Loops Using Back Propagation Neural Networks

  • Ramesh, Jayabalan;Vanathi, Ponnusamy Thangapandian;Gunavathi, Kandasamy
    • ETRI Journal
    • /
    • v.30 no.4
    • /
    • pp.546-554
    • /
    • 2008
  • Phase-locked loops (PLLs) are among the most important mixed-signal building blocks of modern communication and control circuits, where they are used for frequency and phase synchronization, modulation, and demodulation as well as frequency synthesis. The growing popularity of PLLs has increased the need to test these devices during prototyping and production. The problem of distinguishing and classifying the responses of analog integrated circuits containing catastrophic faults has aroused recent interest. This is because most analog and mixed signal circuits are tested by their functionality, which is both time consuming and expensive. The problem is made more difficult when parametric variations are taken into account. Hence, statistical methods and techniques can be employed to automate fault classification. As a possible solution, we use the back propagation neural network (BPNN) to classify the faults in the designed charge-pump PLL. In order to classify the faults, the BPNN was trained with various training algorithms and their performance for the test structure was analyzed. The proposed method of fault classification gave fault coverage of 99.58%.

  • PDF

An Automatic Web Page Classification System Using Meta-Tag (메타 태그를 이용한 자동 웹페이지 분류 시스템)

  • Kim, Sang-Il;Kim, Hwa-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.4
    • /
    • pp.291-297
    • /
    • 2013
  • Recently, the amount of web pages, which include various information, has been drastically increased according to the explosive increase of WWW usage. Therefore, the need for web page classification arose in order to make it easier to access web pages and to make it possible to search the web pages through the grouping. Web page classification means the classification of various web pages that are scattered on the web according to the similarity of documents or the keywords contained in the documents. Web page classification method can be applied to various areas such as web page searching, group searching and e-mail filtering. However, it is impossible to handle the tremendous amount of web pages on the web by using the manual classification. Also, the automatic web page classification has the accuracy problem in that it fails to distinguish the different web pages written in different forms without classification errors. In this paper, we propose the automatic web page classification system using meta-tag that can be obtained from the web pages in order to solve the inaccurate web page retrieval problem.

Classification of Imbalanced Data Based on MTS-CBPSO Method: A Case Study of Financial Distress Prediction

  • Gu, Yuping;Cheng, Longsheng;Chang, Zhipeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.682-693
    • /
    • 2019
  • The traditional classification methods mostly assume that the data for class distribution is balanced, while imbalanced data is widely found in the real world. So it is important to solve the problem of classification with imbalanced data. In Mahalanobis-Taguchi system (MTS) algorithm, data classification model is constructed with the reference space and measurement reference scale which is come from a single normal group, and thus it is suitable to handle the imbalanced data problem. In this paper, an improved method of MTS-CBPSO is constructed by introducing the chaotic mapping and binary particle swarm optimization algorithm instead of orthogonal array and signal-to-noise ratio (SNR) to select the valid variables, in which G-means, F-measure, dimensionality reduction are regarded as the classification optimization target. This proposed method is also applied to the financial distress prediction of Chinese listed companies. Compared with the traditional MTS and the common classification methods such as SVM, C4.5, k-NN, it is showed that the MTS-CBPSO method has better result of prediction accuracy and dimensionality reduction.

The History of Mathematical Problem Solving and the Modeling Perspective (수학 문제 해결의 역사와 모델링 관점)

  • Lee Dae Hyun;Seo Kwan Seok
    • Journal for History of Mathematics
    • /
    • v.17 no.4
    • /
    • pp.123-132
    • /
    • 2004
  • In this paper, we reviewed the history of mathematical problem solving since 1900 and investigated problem solving in modeling perspective which is focused on the 21th century. In modeling perspective, problem solvers solve the realistic problem which includes contextualized situations in which mathematics is useful. In this case, the problem is different from the traditional problems which are routine, close, and words problem, etc. Problem solving in modeling perspective emphasizes mathematizing. Most of all, what is important enables students to use mathematics in everyday problem solving situation.

  • PDF

Analyzing Korean Math Word Problem Data Classification Difficulty Level Using the KoEPT Model (KoEPT 기반 한국어 수학 문장제 문제 데이터 분류 난도 분석)

  • Rhim, Sangkyu;Ki, Kyung Seo;Kim, Bugeun;Gweon, Gahgene
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.8
    • /
    • pp.315-324
    • /
    • 2022
  • In this paper, we propose KoEPT, a Transformer-based generative model for automatic math word problems solving. A math word problem written in human language which describes everyday situations in a mathematical form. Math word problem solving requires an artificial intelligence model to understand the implied logic within the problem. Therefore, it is being studied variously across the world to improve the language understanding ability of artificial intelligence. In the case of the Korean language, studies so far have mainly attempted to solve problems by classifying them into templates, but there is a limitation in that these techniques are difficult to apply to datasets with high classification difficulty. To solve this problem, this paper used the KoEPT model which uses 'expression' tokens and pointer networks. To measure the performance of this model, the classification difficulty scores of IL, CC, and ALG514, which are existing Korean mathematical sentence problem datasets, were measured, and then the performance of KoEPT was evaluated using 5-fold cross-validation. For the Korean datasets used for evaluation, KoEPT obtained the state-of-the-art(SOTA) performance with 99.1% in CC, which is comparable to the existing SOTA performance, and 89.3% and 80.5% in IL and ALG514, respectively. In addition, as a result of evaluation, KoEPT showed a relatively improved performance for datasets with high classification difficulty. Through an ablation study, we uncovered that the use of the 'expression' tokens and pointer networks contributed to KoEPT's state of being less affected by classification difficulty while obtaining good performance.

Analysis of Elementary Textbooks and Guidebook for Teacher regarding the Classification of Angles and Triangles in the Constructivist Perspective (구성주의 관점에서 각과 삼각형의 분류에 관한 초등 교과서 및 교사용지도서 분석)

  • Roh, Eun Hwan;Kang, Jeong Gi
    • Communications of Mathematical Education
    • /
    • v.29 no.3
    • /
    • pp.313-330
    • /
    • 2015
  • The classification is an important activity that is directly related to concept formation. Thus it will need to be made meaningful learning to classification through learner-centered teaching. But we doubts weather teaching and learning to the classification are reflected in the constructivist philosophy of 'learner-centered' well or not. The purpose of this study was to analyze critically the content of elementary textbooks and guidebook for teachers relating to the classification of angles and triangles in terms of constructivism. As a result, there is a problem in the classification of angles that are not provided a reasonable chance to set criteria by agreement of the communities. There is a problem in the classification of triangles that has the characteristics of radical development in terms of diversity. In addition, response of students was predicted like anyone who already acquired knowledge. And it has the shortcomings that the opportunity to have a choice and a discussion to hierarchical and partition classification are not provided. The followings are proposed based on such features; faithful reflection of 'Learner-centered' principle, careful prediction of student response, teaching that focus on process than results.

Artificial Neural Network for Quantitative Posture Classification in Thai Sign Language Translation System

  • Wasanapongpan, Kumphol;Chotikakamthorn, Nopporn
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1319-1323
    • /
    • 2004
  • In this paper, a problem of Thai sign language recognition using a neural network is considered. The paper addresses the problem in classifying certain signs conveying quantitative meaning, e.g., large or small. By treating those signs corresponding to different quantities as derived from different classes, the recognition error rate of the standard multi-layer Perceptron increases if the precision in recognizing different quantities is increased. This is due the fact that, to increase the quantitative recognition precision of those signs, the number of (increasingly similar) classes must also be increased. This leads to an increase in false classification. The problem is due to misinterpreting the amount of quantity the quantitative signs convey. In this paper, instead of treating those signs conveying quantitative attribute of the same quantity type (such as 'size' or 'amount') as derived from different classes, here they are considered instances of the same class. Those signs of the same quantity type are then further divided into different subclasses according to the level of quantity each sign is associated with. By using this two-level classification, false classification among main gesture classes is made independent to the level of precision needed in recognizing different quantitative levels. Moreover, precision of quantitative level classification can be made higher during the recognition phase, as compared to that used in the training phase. A standard multi-layer Perceptron with a back propagation learning algorithm was adapted in the study to implement this two-level classification of quantitative gesture signs. Experimental results obtained using an electronic glove measurement of hand postures are included.

  • PDF

Large-Scale Text Classification with Deep Neural Networks (깊은 신경망 기반 대용량 텍스트 데이터 분류 기술)

  • Jo, Hwiyeol;Kim, Jin-Hwa;Kim, Kyung-Min;Chang, Jeong-Ho;Eom, Jae-Hong;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.5
    • /
    • pp.322-327
    • /
    • 2017
  • The classification problem in the field of Natural Language Processing has been studied for a long time. Continuing forward with our previous research, which classifies large-scale text using Convolutional Neural Networks (CNN), we implemented Recurrent Neural Networks (RNN), Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU). The experiment's result revealed that the performance of classification algorithms was Multinomial Naïve Bayesian Classifier < Support Vector Machine (SVM) < LSTM < CNN < GRU, in order. The result can be interpreted as follows: First, the result of CNN was better than LSTM. Therefore, the text classification problem might be related more to feature extraction problem than to natural language understanding problems. Second, judging from the results the GRU showed better performance in feature extraction than LSTM. Finally, the result that the GRU was better than CNN implies that text classification algorithms should consider feature extraction and sequential information. We presented the results of fine-tuning in deep neural networks to provide some intuition regard natural language processing to future researchers.

The Efficiency of Boosting on SVM

  • Seok, Kyung-Ha;Ryu, Tae-Wook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.55-64
    • /
    • 2002
  • In this paper, we introduce SVM(support vector machine) developed to solve the problem of generalization of neural networks. We also introduce boosting algorithm which is a general method to improve accuracy of some given learning algorithm. We propose a new algorithm combining SVM and boosting to solve classification problem. Through the experiment with real and simulated data sets, we can obtain better performance of the proposed algorithm.

  • PDF