• Title/Summary/Keyword: Classification Prediction

Search Result 1,125, Processing Time 0.028 seconds

Optimal Solution of Classification (Prediction) Problem

  • Mohammad S. Khrisat
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.129-133
    • /
    • 2023
  • Classification or prediction problem is how to solve it using a specific feature to obtain the predicted class. A wheat seeds specifications 4 3 classes of seeds will be used in a prediction process. A multi linear regression will be built, and a prediction error ratio will be calculated. To enhance the prediction ratio an ANN model will be built and trained. The obtained results will be examined to show how to make a prediction tool capable to compute a predicted class number very close to the target class number.

CLASSIFICATION FUNCTIONS FOR EVALUATING THE PREDICTION PERFORMANCE IN COLLABORATIVE FILTERING RECOMMENDER SYSTEM

  • Lee, Seok-Jun;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.439-450
    • /
    • 2010
  • In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.

Analysis of the Basic Inquiry Process in Korean Science Textbooks: Focused on Classification, Prediction and Reasoning (우리나라 과학 교과서에 나타난 기초 탐구 과정 분석: 분류, 예상 및 추리 탐구 요소를 중심으로)

  • Kim, Hee-Kyong;Park, Bo-Hwa;Lee, Bong-Woo
    • Journal of Korean Elementary Science Education
    • /
    • v.26 no.5
    • /
    • pp.499-508
    • /
    • 2007
  • The purpose of this study was to examine the features of the standards of classification, prediction and reasoning in foreign national science standards and the characteristics of these inquiry processes in the Korean science textbooks. The inquiry process of classification was found less frequently rather than observation and measurement. 'The classification of one character' was much more contained than the higher level of classification, 'the classification of composit character'. For the inquiry process of prediction, most of prediction was 'prediction from experiment result'. In the level of prediction, 'basic prediction' was found more frequently than 'operation prediction'. The inquiry process of reasoning was found more frequently than classification and prediction and was increased in the higher grade textbooks. In the level of reasoning, the higher grade textbooks included 'secondary reasoning' rather than 'simple reasoning'.

  • PDF

A GA-based Binary Classification Method for Bankruptcy Prediction (도산예측을 위한 유전 알고리듬 기반 이진분류기법의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.

Multi-Label Classification Approach to Location Prediction

  • Lee, Min Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a multi-label classification method in which multi-label classification estimation techniques are applied to resolving location prediction problem. Most of previous studies related to location prediction have focused on the use of single-label classification by using contextual information such as user's movement paths, demographic information, etc. However, in this paper, we focused on the case where users are free to visit multiple locations, forcing decision-makers to use multi-labeled dataset. By using 2373 contextual dataset which was compiled from college students, we have obtained the best results with classifiers such as bagging, random subspace, and decision tree with the multi-label classification estimation methods like binary relevance(BR), binary pairwise classification (PW).

LM-BP algorithm application for odour classification and concentration prediction using MOS sensor array (MOS 센서어레이를 이용한 냄새 분류 및 농도추정을 위한 LM-BP 알고리즘 응용)

  • 최찬석;변형기;김정도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.210-210
    • /
    • 2000
  • In this paper, we have investigated the properties of multi-layer perceptron (MLP) for odour patterns classification and concentration estimation simultaneously. When the MLP may be has a fast convergence speed with small error and excellent mapping ability for classification, it can be possible to use for classification and concentration prediction of volatile chemicals simultaneously. However, the conventional MLP, which is back-Propagation of error based on the steepest descent method, was difficult to use for odour classification and concentration estimation simultaneously, because it is slow to converge and may fall into the local minimum. We adapted the Levenberg-Marquardt(LM) algorithm [4,5] having advantages both the steepest descent method and Gauss-Newton method instead of the conventional steepest descent method for the simultaneous classification and concentration estimation of odours. And, We designed the artificial odour sensing system(Electronic Nose) and applied LM-BP algorithm for classification and concentration prediction of VOC gases.

  • PDF

Effects of Vehicle Classification Methods on Noise Prediction Results of Road Traffic Noise Map (소음지도 제작 시 차량 분류방법이 소음도 예측 결과에 미치는 영향 연구)

  • Kim, Ji-Yoon;Park, In-Sun;Jung, Woo-Hong;Park, Sang-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.872-876
    • /
    • 2007
  • Road traffic noise map is effective method to save cost and time for environmental noise assessment. Generally, noise is calculated by using theoretical equation of noise prediction, and the calculated result can be influenced by various input factors. Especially, domestic vehicle classification method for traffic flow and heavy vehicle percentage is different from that of foreign countries. Thus, this can cause effect on the noise prediction results. In this study, noise prediction results by using domestic vehicle classification method are compared with those by foreign methods.

  • PDF

Effects of Vehicle Classification Methods on Noise Prediction Results of Road Traffic Noise Map (소음지도 제작시 차량 분류방법이 소음도 예측 결과에 미치는 영향 연구)

  • Kim, Ji-Yoon;Park, In-Sun;Jung, Woo-Hong;Kang, Dae-Joon;Park, Sang-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.193-197
    • /
    • 2012
  • Road traffic noise map is effective method to save cost and time for environmental noise assessment. Generally, noise is calculated by using theoretical equation of noise prediction, and the calculated result can be influenced by various input factors. Especially, domestic vehicle classification method for traffic flow and heavy vehicle percentage is different from that of foreign countries. Thus, this can cause effect on the noise prediction results. In this study, noise prediction results by using domestic vehicle classification method are compared with those by foreign methods.

Feature Selection Effect of Classification Tree Using Feature Importance : Case of Credit Card Customer Churn Prediction (특성중요도를 활용한 분류나무의 입력특성 선택효과 : 신용카드 고객이탈 사례)

  • Yoon Hanseong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.1-10
    • /
    • 2024
  • For the purpose of predicting credit card customer churn accurately through data analysis, a model can be constructed with various machine learning algorithms, including decision tree. And feature importance has been utilized in selecting better input features that can improve performance of data analysis models for several application areas. In this paper, a method of utilizing feature importance calculated from the MDI method and its effects are investigated in the credit card customer churn prediction problem with classification trees. Compared with several random feature selections from case data, a set of input features selected from higher value of feature importance shows higher predictive power. It can be an efficient method for classifying and choosing input features necessary for improving prediction performance. The method organized in this paper can be an alternative to the selection of input features using feature importance in composing and using classification trees, including credit card customer churn prediction.

Classification of Imbalanced Data Based on MTS-CBPSO Method: A Case Study of Financial Distress Prediction

  • Gu, Yuping;Cheng, Longsheng;Chang, Zhipeng
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.682-693
    • /
    • 2019
  • The traditional classification methods mostly assume that the data for class distribution is balanced, while imbalanced data is widely found in the real world. So it is important to solve the problem of classification with imbalanced data. In Mahalanobis-Taguchi system (MTS) algorithm, data classification model is constructed with the reference space and measurement reference scale which is come from a single normal group, and thus it is suitable to handle the imbalanced data problem. In this paper, an improved method of MTS-CBPSO is constructed by introducing the chaotic mapping and binary particle swarm optimization algorithm instead of orthogonal array and signal-to-noise ratio (SNR) to select the valid variables, in which G-means, F-measure, dimensionality reduction are regarded as the classification optimization target. This proposed method is also applied to the financial distress prediction of Chinese listed companies. Compared with the traditional MTS and the common classification methods such as SVM, C4.5, k-NN, it is showed that the MTS-CBPSO method has better result of prediction accuracy and dimensionality reduction.