• Title/Summary/Keyword: Class encryption

Search Result 17, Processing Time 0.027 seconds

Security Architecture for T4 Class Common Data Link

  • Lee, Sang-Gon;Lee, Hoon-Jae;Kim, Hyeong-Rag;Ryu, Young-Jae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.8
    • /
    • pp.63-72
    • /
    • 2017
  • In this paper, we propose a security architecture for HDLC-based T4 class common data link. The common data links are composed of point-to-point, multi-to-point, and point-to-multi mode. For multi-to-point mode, one node has a bundle of point-to-point links with different end-point on the other side of the links. Thus multi-to-point mode can be considered as a bundle of point-to-point mode. Point-to-multi mode is broadcasting link. For point-to-point mode we adopted robust security network scheme to establish a secure data link, and for multi-to-point mode we use broadcast encryption scheme based on ID-based cryptography to distribute encryption key for broadcasting message encryption. We also included MACsec technology for point-to-point data link security. Computational and communicational complexity analysis on the broadcast encryption have been done.

Attacking and Repairing the Improved ModOnions Protocol-Tagging Approach

  • Borisov, Nikita;Klonowski, Marek;Kutylowski, Miroslaw;Lauks-Dutka, Anna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.380-399
    • /
    • 2010
  • In this paper, we present a new class of attacks against an anonymous communication protocol, originally presented in ACNS 2008. The protocol itself was proposed as an improved version of ModOnions, which exploits universal re-encryption in order to avoid replay attacks. However, ModOnions allowed the detour attack, introduced by Danezis to re-route ModOnions to attackers in such a way that the entire path is revealed. The ACNS 2008 proposal addressed this by using a more complicated key management scheme. The revised protocol is immune to detour attacks. We show, however, that the ModOnion construction is highly malleable and this property can be exploited in order to redirect ModOnions. Our attacks require detailed probing and are less efficient than the detour attack, but they can nevertheless recover the full onion path while avoiding detection and investigation. Motivated by this, we present modifications to the ModOnion protocol that dramatically reduce the malleability of the encryption primitive. It addresses the class of attacks we present and it makes other attacks difficult to formulate.

Automatic Encryption Method within Kernel Level using Various Access Control Policy in UNIX system (유닉스 시스템에서 다양한 접근제어 정책을 이용한 커널 수준의 자동 암호화 기법)

  • Lim, Jae-Deok;Yu, Joon-Suk;Kim, Jeong-Nyeo
    • The KIPS Transactions:PartC
    • /
    • v.10C no.4
    • /
    • pp.387-396
    • /
    • 2003
  • Many studies have been done on secure kernel and encryption filesystem for system security. Secure kernel can protect user or system data from unauthorized and/or illegal accesses by applying various access control policy like ACL, MAC, RBAC and so on, but cannot protect user or system data from stealing backup media or disk itself. In addition to access control policy, there are many studies on encryption filesystem that encrypt file data within system level. However few studies have been done on combining access control policy and encryption filesystem. In this paper we proposed a new encryption filesystem that provides a transparency to the user by integrating encryption service into virtual filesystem layer within secure kernel that has various access control policies. Proposed encryption filesystem can provide a simple encryption key management architecture by using encryption keys based on classes of MAC policy and overcome a limit of physical data security of access control policy for stealing.

Selective encryption technique according to class classification in LoRa environment (LoRa 환경에서의 Class 분류에 따른 선택적 암호화 기술)

  • Lee, Nam-gon;Kim, Keecheon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.285-287
    • /
    • 2017
  • Currently, the world of data communication is not simply communication between server and user in a wired way, but using wireless environment, various devices communicate with each other in a wider and diverse environment to generate a large amount of data. In this environment, IoT is now located deep in our lives, and IoT technologies are used in many tasks, but the data used in IoT is exposed without sufficient protection from malicious behavior. Most of these devices do not have enough computing power to cope with malicious attacks. In this paper, we aim to make all devices that have sufficient computing power and safety from simple sensors to be able to have security according to the situation. The proposed technology is based on the importance of the device and computing power, and it is possible to select the encryption technology selectively and to improve security.

  • PDF

Homomorphic Encryption as End-to-End Solution for Smart Devices

  • Shanthala, PT;Annapurna, D;Nittala, Sravanthi;Bhat, Arpitha S;Aishwarya, Aishwarya
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.57-62
    • /
    • 2022
  • The recent past has seen a tremendous amount of advancement in the field of Internet of Things (IoT), allowing the influx of a variety of devices into the market. IoT devices are present in almost every aspect of our daily lives. While this increase in usage has many advantages, it also comes with many problems, including and not limited to, the problem of security. There is a need for better measures to be put in place to ensure that the users' data is protected. In particular, fitness trackers used by a vast number of people, transmit important data regarding the health and location of the user. This data is transmitted from the fitness device to the phone and from the phone onto a cloud server. The transmission from device to phone is done over Bluetooth and the latest version of Bluetooth Light Energy (BLE) is fairly advanced in terms of security, it is susceptible to attacks such as Man-in-the-Middle attack and Denial of Service attack. Additionally, the data must be stored in an encrypted form on the cloud server; however, this proves to be a problem when the data must be decrypted to use for running computations. In order to ensure protection of data, measures such as end-to-end encryption may be used. Homomorphic encryption is a class of encryption schemes that allow computations on encrypted data. This paper explores the application of homomorphic encryption for fitness trackers.

ON THE STRUCTURES OF CLASS SEMIGROUPS OF QUADRATIC NON-MAXIMAL ORDERS

  • KIM, YONG TAE
    • Honam Mathematical Journal
    • /
    • v.26 no.3
    • /
    • pp.247-256
    • /
    • 2004
  • Buchmann and Williams[1] proposed a key exchange system making use of the properties of the maximal order of an imaginary quadratic field. $H{\ddot{u}}hnlein$ et al. [6,7] also introduced a cryptosystem with trapdoor decryption in the class group of the non-maximal imaginary quadratic order with prime conductor q. Their common techniques are based on the properties of the invertible ideals of the maximal or non-maximal orders respectively. Kim and Moon [8], however, proposed a key-exchange system and a public-key encryption scheme, based on the class semigroups of imaginary quadratic non-maximal orders. In Kim and Moon[8]'s cryptosystem, a non-invertible ideal is chosen as a generator of key-exchange ststem and their secret key is some characteristic value of the ideal on the basis of Zanardo et al.[9]'s quantity for ideal equivalence. In this paper we propose the methods for finding the non-invertible ideals corresponding to non-primitive quadratic forms and clarify the structure of the class semigroup of non-maximal order as finitely disjoint union of groups with some quantities correctly. And then we correct the misconceptions of Zanardo et al.[9] and analyze Kim and Moon[8]'s cryptosystem.

  • PDF

A Design of Online Execution Class and Encryption-based Copyright Protection Hybrid (온라인 실행 코드와 암호화 기반 불법 복제 방지 시스템의 융합설계)

  • Kim, Hee-Sun;Kim, Sung-Ryul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.113-115
    • /
    • 2012
  • 안드로이드 앱의 불법 복제를 방지하고자 기존에 온라인 실행(Online Execution Class: OEC) 또는 앱을 암호화된 상태로 배포하여 실행 시에 적법한 사용자만이 암호를 복호화하여 실행이 가능하도록 하는 방법들이 있다. 하지만 스마트폰이 저전력과 저사양인 점을 고려할 때, 위에 방법은 스마트폰의 보안을 보장할 수 있지만 성능 면에서 부담이 된다. 본 논문에서 OEC를 암호화하여 보안 수준을 높이고 개발자에게 보안 수준을 선택할 수 있게 하여 환경에 맞추어 안전을 유지할 수 있도록 시스템 설계를 제안한다.

Computational Complexity in Imaginary Quadratic Order (이차 복소 order에서의 계산 복잡도에 관한 소고)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.3
    • /
    • pp.545-551
    • /
    • 2012
  • In this paper, we propose a new cryptosystem based on the IQC depended on the complexity of class number and intractibility of factoring integer, and introduce two algorithm which reduce encryption and decryption times. To recognize the security of the cryptosystem, we take a simple example to analyze the complexities of public key and secret key and then introduce the operating process of the cryptosystem.

Encapsulation of SEED Algorithm in HCCL for Selective Encryption of Android Sensor Data (안드로이드 센서 정보의 선택적 암호화를 지원하는 HCCL 기반 SEED 암호의 캡슐화 기능 연구)

  • Kim, Hyung Jong;Ahn, Jae Yoon
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.73-81
    • /
    • 2020
  • HCCL stands for Heterogenous Container Class Library. HCCL is a library that allows heterogeneous types of data to be stored in a container as a single record and to be constructed as a list of the records to be stored in database. With HCCL, encryption/decryption can be done based on the unified data type. Recently, IoT sensor which is embedded in smartphone enables developers to provide various convenient services to users. However, it is also true that infringement of personal information may occur in the process of transmitting sensor information to API and users need to be prepared for this situation in some sense. In this study, we developed a data model that enhances existing security using SEED cryptographic algorithms while managing information of sensors based on HCCL. Due to the fact that the Android environment does not provide permission management function for sensors, this study decided whether or not to encrypt sensor information based on the user's choice so that the user can determine the creation and storage of safe data. For verification of this work, we have presented the performance evaluation by comparing with the situation of storing the sensor data in plaintext.

A Development of Cryptography Learning Program with the PCM Model for the Gifted Elementary Students of Information Science (초등 정보 영재학생들을 위한 병행 교육과정 모델을 적용한 암호화 교육 프로그램 개발)

  • Kim, Jeehyun;Kim, Kapsu
    • Journal of The Korean Association of Information Education
    • /
    • v.18 no.3
    • /
    • pp.371-380
    • /
    • 2014
  • There is a little curriculum for gifted and talented elementary information. Generally parallel curriculum model(PCM) for gifted children is being applied to many subjects. It is necessary to apply the PCM for gifted elementary children of information science. This model is a prime example of a training program was applied to the encryption. There are four parallel curriculum model. The four curriculum model can be used individually or combined, may be used only partially. In this study, the benefits of parallel curriculum model in order to reflect as much as possible in order all four courses were used. This program for 19 students in the gifted children for information science class were applied to four periods. Observe and record the activities of students in class, the survey targeted learners, assignments, methods of analysis were used. We found that the level of the program was suitable and the aspects of giftedness such as an ability to focus on the task and an ability to solve the problem were enhanced. Moreover, participants became more interested in the topic of encryption following the program.