• Title/Summary/Keyword: Class Flow

Search Result 705, Processing Time 0.023 seconds

A Study on a Bandwidth Guarantee Method of Subscriber-based DiffServ in Access Networks (액세스 망에서의 DiffServ 기반 가입자 대역 보장 방법 연구)

  • Park, Hea-Sook;Kim, Hae-Sook;Youn, Cheong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.709-716
    • /
    • 2005
  • QoS is an important requirement of the FTTH (Fiber To The Home) subscriber in access network using E-PON (Ethernet Passive Optical Network). In this research, we describe the structure of the access network and propose a bandwidth guarantee scheme for subscriber and service according to the requirements of the subscriber, service and system. This scheme uses two kinds of the classification table, which are called 'service classification table' and 'subscriber classification table.' Using the classification table, we can identify the flow of the subscriber and service. Also, we compute the number of hash table entry to minimize the loss ratio of flows using the M/G/k/k queueing model. Finally, we apply the DRR scheduling through virtual queueing per subscriber instead of the aggregated class.

Design of General Peripheral Interface Using Serial Link (직렬 링크 방식의 주변 장치 통합 인터페이스 설계)

  • Kim, Do-Seok;Chung, Hoon-Ju;Lee, Yong-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.4 no.1
    • /
    • pp.68-75
    • /
    • 2011
  • The performance of peripheral devices is improving rapidly to meet the needs of users for multimedia data. Therefore, the peripheral interface with wide bandwidth and high transmission rate becomes necessary to handle large amounts of data in real time for multiple high-performance devices. PCI Express is a fast serial interface with the use of packets that are compatible with previous PCI and PCI-X. In this paper, we design and verify general peripheral interface using serial link. It includes two kinds of traffic class (TC) labels which are mapped to virtual channels (VC). The design adopts TC/VC mapping and the scheme of arbitration by priority. The design uses a packet which can be transmitted through up to four transmission lanes. The design of general peripheral interface is described in Verilog HDL and verified using ModelSim. For FPGA verification, Xilinx ISE and SPARTAN XC3S400 are used.We used Synopsys Design Compiler as a synthesis tool and the used library was MagnaChip 0.35um technology.

Dynamic Performance of Natural Gas Injection Valve for Heavy-Duty CNG Dual Fuel Engine (대형 CNG 혼소 엔진용 천연가스 분사밸브 동특성 연구)

  • Kim, Yong-Rae;Choi, Young
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2017
  • Natural gas fuel has known to be very promising in terms of abundancy and economic value. Therefore it is widely treated as research topics in a variety field of production, storage and utilization. Natural gas has become one of the major sources for the power generation by using internal combustion engines(ICE). Development of natural gas fuel injection device should be preceded to realize a reliable natural gas fuel supply system for a MW class power generation reciprocating ICE. In this research, an injection valve which consists of solenoid and body part with a moving plate was designed and its dynamic performance was experimented in the engine-like environment. Displacement length and diameter of an armature and diameter of a solenoid coil were tested at former study. In this research the effect of materials of solenoid core, size of main housing inlet and supply gas pressure are examined.

Detailed Design for 25bar-class Biogas Compression Supplying System (25BAR급 바이오가스 고압 압축공급시스템 상세설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.173.1-173.1
    • /
    • 2011
  • The high fuel flexibility of gas turbine power system has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and sewage waste water as a fuel for gas turbines has increased. We investigated the performance of high pressure biogas compression system and operating conditions for supplying biogas. The total flow per minute of biogas from food waste water digestion tank is $54Nm^3$. The main type of biogas compression system is the reciprocating system and screw type system. The target of biogas mechanical data is the as belows; inlet pressure 0.045bar, supplying biogas temperature is $30{\sim}60^{\circ}C$, and final pressure is above the 25 bar. Also, inlet conditions of biogas consist of CH4 48.5%~83%, $H_2S$ Max. 500ppm, $NH_3$ Max. 1,500ppm and Siloxane 2.7~4.6ppm. The boosting Blower system raises a pressure from 0.045bar to 1bar before main compressor. The main system lay out of reciprocating consisits of compressor driver, filter, cooling system, blowdown vessel, control system and ESD(Emergency Shut Down) system. And an enclosure package needs to be installed for reducing noise up to 75dB. The system driver is the electronic motor of explosion proof type. Forthe compressor system reliable operation, the cleaning system something like particulate filter needs to be set up in the inlet of compressor and Coalescing Filter in the outlet of compressor. Particulate Filter has to be removed above $10{\mu}m$ size of the particles in biogas. The coalescing filter(Micofine Borosilicate Glass Fibers Filter treated phenol acid) also removes moisture and oil of above $0.3{\mu}m$ to be involved in high pressure biogas up to 90%~98%.

  • PDF

Structure Design and Thermal Analysis of Cryogenic Cooling System for a 1500 A, 400 mH Class HTS DC Reactor (1500 A, 400 mH급 초전도 직류 리액터용 극저온 냉각 시스템 구조 설계 및 열 해석)

  • Quan, Dao-Van;Le, Tat-Thang;Sung, Hae-Jin;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.31-41
    • /
    • 2018
  • This paper discusses a structure design and thermal analysis of cryogenic conduction cooling system for a high current HTS DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. Hence, we carried out the operating test of conduction cooling system of the 1st stage area with high current flow. The cooper bars was cooled down to 40 K and HTS leads operated stably. As a experiment result, the total heat load of the 1st stage area is 190 W. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

False Alarm Minimization Technology using SVM in Intrusion Prevention System (SVM을 이용한 침입방지시스템 오경보 최소화 기법)

  • Kim Gill-Han;Lee Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.7 no.3
    • /
    • pp.119-132
    • /
    • 2006
  • The network based security techniques well-known until now have week points to be passive in attacks and susceptible to roundabout attacks so that the misuse detection based intrusion prevention system which enables positive correspondence to the attacks of inline mode are used widely. But because the Misuse detection based Intrusion prevention system is proportional to the detection rules, it causes excessive false alarm and is linked to wrong correspondence which prevents the regular network flow and is insufficient to detect transformed attacks, This study suggests an Intrusion prevention system which uses Support Vector machines(hereinafter referred to as SVM) as one of rule based Intrusion prevention system and Anomaly System in order to supplement these problems, When this compared with existing intrusion prevention system, show performance result that improve about 20% and could through intrusion prevention system that propose false positive minimize and know that can detect effectively about new variant attack.

  • PDF

Development of Gas Generator for Liquid Rocket Engine to prevent of damage for LOx post (가스 발생기 분사기 LOx post 손상 방지를 위한 분사기 개발)

  • Song Ju-Young;Kim Jong-Gyu;Moon Il-Yoon;Han Yeoung-Min;Choi Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.353-357
    • /
    • 2005
  • LOx post damage occurs from the development process of the full-scale gas generator which is necessary to 30 tonf class engine development was described. The cause and analysis for damage was described. The combustion test result of 4 injector, the full-scale gas generator and redesigned injector was described. Combustion instability, purge, the low momentum of LOx spray, small recess number, the low flow of LOx, and the high spray angle is main reason the possibility of knowing. The redesign for the injector in the direction of increase of recess number, increase of LOx and fuel spray angle, decrease of gap interval between the LOx post outer wall and fuel screen and increase of LOx post wall thick became accomplished.

  • PDF

Characteristics of the Continuous Measurement and the Fuel Analysis for Emission Calculation of Carbon Dioxide in a Coal Fired Power Plant (석탄화력발전소 이산화탄소 배출량 산정을 위한 연료분석법과 연속측정법의 특성)

  • Choi, Hyun-Ho;Yoo, HoSeon
    • Plant Journal
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • This study calculates carbon dioxide emissions using the fuel analysis and the continuous measurement from 500 MW-class coal-fired power plants and evaluates the characteristics of each method. The emissions calculation using fuel analysis was the lowest calculation among the emissions calculation methods. This is because of low net calorific value analysis. When using the low calorific coals, it is beneficial to utilize the fuel analysis. Also it showed the characteristics of the lower calculation emissions when used the as fired coals than the as received coals. However, the difference is negligible to less than 2%. As sample analysis personnel and equipment are limited in the present circumstances, it is also deemed appropriate to use the as received coals to fuel analysis. Continuous measurement showed somewhat higher emissions than the fuel analysis, and lower emissions than calculation method using domestic emission factors. Thus, if the calculated emission using fuel analysis increases with the coal type changes, it is beneficial to using modified flow rate measurement method.

  • PDF

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Management Strategies to Conserve Soil and Water Qualities in the Sloping Uplands in Korea (한국의 경사지 밭의 토양 및 물의 보전 관리 전략)

  • Yang, Jae-E.;Ryu, Jin-Hee;Kim, Si-Joo;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.435-449
    • /
    • 2010
  • Soils in the sloping uplands in Korea are subject to intensive land use with high input of agrochemicals and are vulnerable to soil erosion. Development of the environmentally sound land management strategy is essential for a sustainable production system in the sloping upland. This report addresses the status of upland agriculture and the best management practices for the uplands toward the sustainable agriculture. More than 60% of Korean lands are forest and only 21% are cultivating paddy and upland. Uplands are about 7% of the total lands and about 62% of the uplands are in the slopes higher than 7%. Due to the site-specificity of the upland, many managerial and environmental problems are occurring, such as severe erosion, shallow surface soils with rocky fragments, and loadings of non-point source (NPS) contaminants into the watershed. Based on the field trials, most of the sloping uplands were classified as Suitability Class III-V and the major limiting factor was slope and rock fragments. Due to this, soils were over-applied with N fertilizer, even though N rate was the recommendation. This resulted in decreases in yield, degradation of soil quality and increases in N loading to the leachate. Various case studies drew management practices toward sustainable production systems. The suggested BMP on the managerial, vegetative, and structural options were to practice buffer strips along the edges of fields and streams, winter cover crop, contour and mulching farming, detention weir, diversion drains, grassed waterway, and slope arrangement. With these options, conservation effects such as reductions in raindrop impact, flow velocity, runoff and sediment loss, and rill and gully erosion were observed. The proper management practice is a key element of the conservation of the soil and water in the sloping upland.