• Title/Summary/Keyword: Clark-type sensor.

Search Result 7, Processing Time 0.03 seconds

A Study on the Microfabricated Clark-type Sensor for Measuring Dissolved Oxygen (용존 산소 측정용 초소형 Clark-type 센서에 대한 연구)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young-Mi;Pak, Jung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1450-1454
    • /
    • 2007
  • This paper presents a microfabricated Clark-type sensor which exactly can measure dissolved oxygen in the cell containing solution. We designed, fabricated, and characterized a microfabircated Clark-type oxygen sensor for measuring dissolved oxygen. The microfabricated oxygen sensor consists of 3-electrodes on a glass substrate, a FEP (Fluorinated ethylene propylene) oxygen-permeable membrane, and PDMS (Polydimethylsiloxane) reservoir for storing sample solution. Thin-film Ag/AgCl was employed as a reference electrode and its durability was verified by obtaining a stable open circuit potential for 2 hours against a commercial Ag/AgCl electrode and a stable cyclic voltammetry curve. Selectivity, response time, and linearity of the fabricated oxygen sensor were also verified well by cyclic voltammetry and amperometry depending. The fabricated oxygen sensor showed a 90% response time of 40sec and an excellent linearity with a correlation coefficient of 0.994.

Development of low power type sensor for the DO concentration measurement by clark electrode (Clark전극에 의한 DO 농도측정을 위한 절전형 센서개발에 관한 연구)

  • 이동희
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.254-260
    • /
    • 1995
  • A method is described for the design and fabrication of the sensor interface circuits on the Clark electrodes for the dissolved oxygen(DO). The discussion includes a method for the +5 V single-supply driving for the sensor circuits, which has low power comsumption for the front-end electronics. DO probe under test is composed of the Clark electrode with silver anode, gold cathode and the electrolyte of half saturated KCI solution and the FEP teflon memtrance for the oxygen penetration. Typical polarograms for the DO probes by using this sensor circuit reveals high accuracy over 99% of the I to V conversion. Partial pressure of oxygen obtained from the polarograms are well suited to the results calculated. It is expected that the proposed sensor circuits can be utilized into the customized IC for the battery-driven small-size DO meters.

  • PDF

Development of a multi channel measurement system for the cellular respiration measurement (세포 호흡량 측정용 다채널 측정 시스템 개발)

  • Nam, Hyun-Wook;Park, Jung-Il;KimPak, Young-Mi;Pak, James Jung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.1
    • /
    • pp.36-42
    • /
    • 2010
  • This paper describes a multi channel measurement system which can measure the cellular respiration level in a solution containing cells by using a Clark-type sensor with the solution temperature control unit. The Clark-type sensor can measure the cellular respiration level in the solution because it can measure the reduction current depending on the dissolved oxygen level in the solution. This measurement system was maintained the temperature within ${\pm}0.1^{\circ}C$ of the setting temperature value by on/off control method in order to measure the precise cellular respiration level. The measurement system showed that the applied voltage to the working electrode was very stable(-0.8 V$\pm$ 0.0071 V) by using proportional control method. From the current measurement, the response time and the linearity correlation coefficient were 25 sec and 0.94, respectively, which are very close to the results of the commercial product. Using this system and the fabricated Clarktype sensor, the average ratio of the uncoupled OCR(oxygen consumption rate) to the coupled OCR was 1.35 and this is almost the same as that obtained from a commercial systems.

Fabrication of Clark-type Sensor for Measuring Dissolved Oxygen Using FEP Membrane (FEP 멤브레인을 이용한 용존 산소 측정용 Clark-type 센서 제작)

  • Park, Jung-Il;Chang, Jong-Hyeon;Choi, Myung-Ki;Lee, Dong-Young;Kim, Young Mi;Pak, Jung Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.276-277
    • /
    • 2007
  • 본 논문에서는 미량의 세포를 포함한 용액 내에서 세포의 산소호흡량을 측정하기 위해 FEP(Fluorinated Ethylene Propylene)를 멤브레인으로 사용한 Clark-type 센서를 제안하였다. 제안된 Clark-type 센서는 3-전극 시스템을 구성하는 유리 기판, 산소를 선택적으로 투과 시키는 FEP 멤브레인과 세포를 담을 수 있는 PDMS reservoir로 구성된다. 산소 센서의 3-전극 시스템에서 작업 전극과 상대 전극으로는 Au, 기준 전극으로는 Ag/AgCl을 사용하였다. 기준 전극은 Ag 전극을 0.1M KCl/Tris-HCl 용액에서 chlorination하여 표면에 AgCl이 형성되도록 하였고, OCP(Open Circuit Potential) test를 수행한 결과 2시간 동안 안정적인 OCP 특성을 보여 좋은 내구성을 가짐을 확인하였다. 또한, 산소 유무에 따른 cyclic voltammetry 그래프의 차이를 확인하고, amperometry로 감도 및 반응 시간, 선형성을 측정/분석하였다. 제작된 산소 센서는 40초의 90% 반응 시간과 0.994의 아주 좋은 선형 상관계수를 보여주었다.

  • PDF

Investigation of the Flow Dependence of a FET-Type Dissolved Oxygen Sensor and Its Reducing Method (FET형 용존 산소 센서의 유속에 의한 영향 조사와 감쇄 기법)

  • Jeong, H.;Kim, Y.J.;Lee, Y.C.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.180-186
    • /
    • 2001
  • Recently, FET type dissolved oxygen sensor was proposed to overcome the disadvantages of the amperometric Clark-type sensor. The inherent problem of the proposed sensor, however, is the flow dependence of the sensor performances since the proposed sensor detects the pH change in close proximity to the working electrode. In this study, we decided the direction which minimize the flow effect in FIA(flow injection analysis) system. And a hydrodynamic buffer layer which can reduce the flow dependence were proposed. The suggested buffer-layers were formed onto sensing area and working electrode with mixed polymer matrix of TEOS(tetraethylorthosilicate) and DEDMS(diethoxydimethylsilane).

  • PDF

Electrochemical Determination of Immobilization Technique for Glucose Sensor Fabrication (포도당 센서의 제작을 위한 고정화 방법의 전기화학적 결정)

  • 정태훈;홍석인;노봉수;정용섭;윤정원;김태진
    • KSBB Journal
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 1998
  • The present work proposes a simple electrochemical method applicable to any immobilization processes of oxidase using a Clark type oxygen electrode as a base transducer. The present work suggests an optimal immobilization technique among three different methods of glucose oxidase(GOD) onto one side of $37[\mu}$mthick blend membranes, composed o 80% of cellulose triacetate and 20% of polycaprolactone, on the basis of the maximum Michaelis-Menten parameter(Vm) determined by either steady state or transient analyses. The electrode system was made of disk type gold cathode(4mm diameter) and Ag/AgCl anode. One side of the blend membrane was in contact with the cathode surface while the other side was immobilized with GOD either in covalent-bond or cross-linked forms, the latter being covered by $25{\mu}$m thick dialysis membrane of cellulose acetate. The resultant current density was on-line monitored by a potentiostat while glucose level was varied from 1 to 20 mM. The present study shows that direct cross-linking of GOD with glutaraldehyde was mostly preferred for fabrication of glucose sensor, on the basis of resultant kinetic parameters from either steady state or transient analyses.

  • PDF

Channel Gap Measurements of Irradiated Plate Fuel and Comparison with Post-Irradiation Plate Thickness

  • James A. Smith;Casey J. Jesse;William A. Hanson;Clark L. Scott;David L. Cottle
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2195-2205
    • /
    • 2023
  • One of the salient nuclear fuel performance parameters for new fuel types under development is changes in fuel thickness. To test the new commercially fabricated U-10Mo monolithic plate-type fuel, an irradiation experiment was designed that consisted of multiple mini-plate capsules distributed within the Advanced Test Reactor (ATR) core, the mini-plate 1 (MP-1) experiment. Each capsule contains eight mini-plates that were either fueled or "dummy" plates. Fuel thickness changes within a fuel assembly can be characterized by measuring the gaps between the plates ultrasonically. The channel gap probe (CGP) system is designed to measure the gaps between the plates and will provide information that supports qualification of U-10Mo monolithic fuel. This study will discuss the design and the results from the use of a custom-designed CGP system for characterizing the gaps between mini-plates within the MP-1 capsules. To ensure accurate and repeatable data, acceptance and calibration procedures have been developed. Unfortunately, there is no "gold" standard measurement to compare to CGP measurements. An effort was made to use plate thickness obtained from post-irradiation measurements to derive channel gap estimates for comparison with the CGP characterization.