• Title/Summary/Keyword: Clamping circuit

Search Result 78, Processing Time 0.023 seconds

A Single Stage Isolated Power Factor Correction Using clamping Circuit (클램핑 회로를 이용한 단계층 절연 역률 보정)

  • 서재호;이희승
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.319-322
    • /
    • 1998
  • In this paper we further propose to add a very simple regenerative clamping circuit to SSIPP to reduce the voltage stress and to recycle the energy trapped in the leakage inductance of the isolation transformer, thus eliminating the need for a lossy snubber circuit. In addition, this proposed clamping circuit also provides a mechanism to reset the magnetizing current of the output transformer of SSIPP employing a Forward converter as the output stage. Simulations and experimental results are reported to verify the operation and performance of the SSIPP with regenerative clamping.

  • PDF

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

Clamping-diode Circuit for Marine Controlled-source Electromagnetic Transmitters

  • Song, Hongxi;Zhang, Yiming;Gao, Junxia;Zhang, Yu;Feng, Xinyue
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.395-406
    • /
    • 2018
  • Marine controlled-source electromagnetic transmitters (MCSETs) are important in marine electromagnetic exploration systems. They play a crucial role in the exploration of solid mineral resources, marine oil, and gas and in marine engineering evaluation. A DC-DC controlled-source circuit is typically used in traditional MCSETs, but using this circuit in MCSETs causes several problems, such as large voltage ringing of the high-frequency diode, heating of the insulated-gate bipolar transistor (IGBT) module, high temperature of the high-frequency transformer, loss of the duty cycle, and low transmission efficiency of the controlled-source circuit. This paper presents a clamping-diode circuit for MCSET (CDC-MCSET). Clamping diodes are added to the controlled-source circuit to reduce the loss of the duty ratio and the voltage peak of the high-frequency diode. The temperature of the high-frequency diode, IGBT module, and transformer is decreased, and the service life of these devices is prolonged. The power transmission efficiency of the controlled-source circuit is also improved. Saber simulation and a 20 KW MCSET are used to verify the correctness and effectiveness of the proposed CDC-MCSET.

A Circuit Design for Clamping an Overvoltage in Three-level Inverters (3-레벨 인버터를 위한 과전압 제한회로 설계)

  • Jeong, Jae-Houn;Lee, Yo-Han;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.299-301
    • /
    • 1995
  • This paper represents an overvoltage clamping circuit for three level inverters. With a proposed overvoltage clamping circuit, the problems that high voltage stresses and voltage unbalance between outer and inner switches occurs in high power and high voltage 3-level inverters are reduced.

  • PDF

A Circuit Design for Clamping an Overvoltage in Three-level GTO Inverters (3-레벨 GTO 인버터를 위한 과전압 제한회로 설계)

  • Suh, Bum-Seok;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.258-261
    • /
    • 1994
  • This paper presents a circuit design far clamping the overvoltages across the GTOs in three-level GTO inverters. The proposed circuit has two roles as follows; one is to minimize the power dissipation in each GTO. It can be achieved by clamping the overvoltage to half that of the DC-link voltage as exactly as possible. The other is to get blocking voltage balancing between the inner GTOs and the outer GTOs.

  • PDF

Clamping force control of injection molding machine using 2-way cartridge valve based logic circuit (2-방향 카트리지 밸브 기반 로직회로에 의한 사출성형기의 형체력 제어)

  • Cho, Seung Ho
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • The present study deals with the issue of clamping force control of an injection molding machine using 2-way cartridge valve based logic circuit. The operating principle for the cartridge valve is described with its construction and static opening behavior. Basic module circuits are designed first and analysed according to the basic functions. Then they are combined with a virtual design model for the clamping mechanism to simulate the control performance of the overall system. The backlash inherent in the mechanism is considered while evaluating the time-delay in the process of clamping force build-up. The effects of a couple of design parameters in backlash, i.e., interval and stiffness have been demonstrated in the time-domain.

A Single Stage Isolated Power Factor Correction Power Supplies using Clamping Circuit (클램핑 회로를 이용한 단계층 절연 역률 보정 전원 공급장치)

  • Seo, Jai-Ho;Lee, Hee-Seung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2021-2023
    • /
    • 1998
  • In this paper we further propose to add a very simple regenerative clamping circuit to SSIPP to reduce the voltage stress and to recycle the energy trapped in the leakage inductance of the isolation transformer, thus eliminating the need for a lossy snubber circuit. In addition, this proposed clamping circuit also provides a mechanism to reset the magnetizing current of the output transformer of SSIPP employing a Forward converter as the output stage. Simulations and experimental results are reported to verify the operation and performance of the SSIPP with regenerative clamping.

  • PDF

A Novel Soft-Switching Two-Switch Flyback Converter with a Wide Operating Range and Regenerative Clamping

  • Kim, Marn-Go;Jung, Young-Seok
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.772-780
    • /
    • 2009
  • A novel soft-switching two-switch flyback converter is proposed in this paper. This converter is composed of two active power switches, a flyback transformer, a blocking diode, and two passive regenerative clamping circuits. The proposed converter has the advantages of a low cost circuit configuration, a simple control scheme, a high efficiency, and a wide operating range. The circuit topology, analysis, design considerations, and experimental results of the new flyback converter are presented.

Performance Analysis for Auxiliary Resonant Commutated Pole Inverter with Clamping Diodes (클램핑 다이오드를 갖는 ARCP 인버터의 성능 분석)

  • Lee, Yoon-Seok;Kim, Jae-Hyuk;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1611-1618
    • /
    • 2018
  • This paper proposes a new auxiliary resonant commutated pole (ARCP) inverter which has a modified auxiliary circuit. The proposed auxiliary circuit includes two auxiliary IGBT switches, an LC resonant circuit, and two clamping diodes. In order to analyze the performance of proposed ARCP inverter, computer simulations with PSCAD, and hardware experiments were carried out. Through analyzing the experimental results, it is known that the proposed ARCP inverter offers efficiency improvement of 1.5% compared with the hard-switching inverter.

Optimized Series Connection of Power Semiconductor Using Active Clamping Method (Active Clamping 방식을 이용한 전력용 반도체의 최적 직렬연결 방법)

  • Kim, Bong-Seong;Ko, Kwang-Cheol
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2143-2145
    • /
    • 2005
  • Power semicondcutor인 IGBT MOSFET, GTO, SI-Thyristor등은 높은 스위치 신뢰성과 life time, 그리고 fast repetition rate 등을 지니고 있기 때문에 medium/High voltage영역에서 스위치 사용이 대두되어 왔으나, Thyratron이나 Trigatron(Gap switch)와 비교하여 낮은 전압/전류를 스위칭하기 때문에 전통적으로 직렬연결을 통해 high voltage 영역의 스위치로 사용되어 왔다. 하지만, 직렬연결되어 있는 각각의 power semiconductor와 gate driving circuit의 on/off synchronization이 맞지 않기 때문에 부하의 급격한 변화에 따른 전압의 balance에 문제가 가장 심각하게 대두되어 왔다. 이러한 문제를 해결하기 위해서 gate driving circuit에서 제어를 해주는 방법과 power semiconductor에서 제어를 해주는 방법이 있으나 두 방식 모두 문제점이 있다. 본 논문에서는 기존의 zener clamping방식에서 벗어나 새로운 active clamping방식의 직렬연결을 제안했으며 시뮬레이션과 실험을 통해 나타난 이 결과들은 on/off transient 시 symmetry를 유지하는데 효과적이라는 것을 보여주고 있다.

  • PDF