• Title/Summary/Keyword: Clamp

Search Result 1,105, Processing Time 0.032 seconds

Development of Clamp Type Transferring Mechanism for Package Substrate's Wet Process (패키지 기판 습식 공정용 클램프 이송 장치의 개발)

  • Ryu, Sun-Joong;Heo, Jun-Yeon;Cho, Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.193-201
    • /
    • 2011
  • Clamp type transferring mechanism for package substrate's wet processes was newly developed instead of conventional roller type transferring mechanism. Clamp type transferring mechanism has the advantages of reducing the panel deflection and of minimizing the contact problem between the panel and the transferring mechanism. Individual clamp of the mechanism has two distinct mechanical functions which are perfectly fixing a panel during the transferring and generating adequate tension for the panel. To determine the mechanical parameters of the clamp, panel deflection simulation was conducted and the result was verified by the panel deflection measurement. Also, fixing angle of a clamp could be determined by the free body force analysis of individual clamp. Finally clamp type transferring mechanism was actually manufactured and the transferring performance was verified during the water spraying condition of the package substrate's wet processes.

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

Load analysis of Wedge type Rail Clamp (쐐기형 Rail Clamp의 하중분석)

  • Han, Geun-Jo;Ahn, Chan-Woo;Kim, Tae-Hyong;Shim, Jae-Joon;Han, Dong-Seop;Lee, Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1-6
    • /
    • 2003
  • In this paper, we design a wedge type rail clamp which can protect container crane from wind with constant clamping force regardless of the operating period. When we design wedge type rail clamp. it is important to determine the angle of wedge and analyze a contact condition of roller and wedge so that we might develop a rail clamp with variable capacity. Therefore, this paper suggest a process to decide wedge angles within feasible range which could be obtained using load analysis and FEA of wedge type rail clamp.

  • PDF

Optimal Design of Disk clamp to Reduce RRO in a Hard Disk Drive (진동저감을 위한 HDD용 Disk Clamp의 최적설계)

  • 이행수;고정석;황태연;정우철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.539-542
    • /
    • 2002
  • The role of disk clamp is to fasten disks to motor and to prevent the slip of disks during operation. This paper examined the effects of the design parameters of disk clamp - thickness, contact radius and cross-sectional shape -on the clamping force and circumferential stress distribution of disk. The large stress variation in circumferential direction results in large disk waveness and will increase repeatable run-out (RRO) finally. The disk clamp-disk-disk spacer system is modeled and the FE analysis is performed by ANSYS. The disk clamp with large contact radius shows more uniform stress distribution than the one with small contact radius and the stiffness variation around circumferential direct ion or the addition of the bending sect ion can make stress distribution uniform.

  • PDF

INSULIN RESPONSIVENESS TO GLUCOSE AND TISSUE RESPONSIVENESS TO INSULIN IN SOWS, SHEEP AND PIGS

  • Sano, H.;Terashima, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.4 no.1
    • /
    • pp.41-45
    • /
    • 1991
  • Insulin responsiveness to glucose and tissue responsiveness to insulin, using the hyperglycemic clamp and the hyperinsulinemic euglycemic clamp techniques, were compared among cows, sheep and pigs. The plasma insulin concentrations during the hyperglaycemic clamp period were highest (p < 0.05) in cows, followed by sheep and pigs. The glucose infusion rate in the hyperinsulinemic euglycemic clamp technique was greater (p < 0.01) in pigs than in cows and sheep. These results suggest responsiveness to insulin is higher in pigs than in cows and sheep.

A Study on the Sliding Distance and the Proper Position of Supporter with respect to the Wedge Angle in the Wedge Type Rail Clamp

  • Han, Dong-Seop;Han, Geun-Jo;Lee, Seong-Wook
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.115-120
    • /
    • 2006
  • The rail clamp is the device to prevent the crane slips along rails from the wind blast as well as to locate a container crane in the set position in operating mode. In this study we conduct the research for the sliding distance of rail clamp and the proper position of supporter with respect to the wedge angle in the wedge type rail clamp. The sliding distance to display the clamping force of the jaw pad corresponding to the design wind speed criteria is determined by the total displacement of the rail clamp at the roller center and the wedge angle. And the supporter is the device to prevent the overload which is applied on each part of the rail clamp by wind speed increment, because a clamping force is generated by the sliding of the wedge due to the wind. Accordingly the position of the supporter to prevent the overload is determined by analyzing the forces applied to the rail clamp. In order to analyze the sliding distance and the proper position of supporter with respect to the wedge angle as the wind speed is 40m/s, 5-kinds of wedge angles, such as 2, 4, 6, 8, $10^{\circ}$, were adopted as the design parameter.

  • PDF

A New Controllable Active Clamp Algorithm for Switching Loss Reduction in a Module Integrated Converter System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.4
    • /
    • pp.465-471
    • /
    • 2014
  • This paper proposes a new switching algorithm for an active clamp snubber to improve the efficiency of a module integrated converter system. This system uses an active clamp method for the snubber circuit for the efficiency and reliability of the system. However, the active clamp snubber circuit has the disadvantage that system efficiency is decreased by switch operating time because of heat loss in resonance between the snubber capacitor and leakage inductance. To address this, this paper proposes a new switching algorithm. The proposed algorithm is a technique to reduce power consumption by reducing the resonance of the snubber switch operation time. Also, the snubber switch is operated at zero voltage switching by turning on the snubber switch before main switch turn-off. Simulation and experimental results are presented to show the validity of the proposed new active clamp control algorithm.

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Feasibility of Using the Clamp Meter in Measuring X-Ray Tube Current

  • Kim, Sung-Chul
    • International Journal of Contents
    • /
    • v.9 no.1
    • /
    • pp.38-41
    • /
    • 2013
  • The clamp meter maintains electric safety as a non-invasive method while measuring the absolute value of tube current with it has been recently developed for an X-ray high-tension cable. Especially this can show high accuracy at short X-ray exposure time. Considering such a condition, this study is to evaluate the feasibility of a clamp meter in measuring X-ray tube current by taking the measurements and comparing with those of the Dynalyzer III which has been considered as a standard measuring device. From measuring the tube current accuracy depending on changes in tube voltage and exposure time, the clamp meter showed higher accuracy rate which was -1.3~4.2% difference. Thus clamp meter can be used for clinical radiologists who are not familiar electric circuit to manage X-ray devices easily and correctly in the future.

The Design of Supporter to Prevent Overclamping in Wedge Type Rail clamp (쐐기형 레일클램프의 과클램핑 방지를 위한 지지장치 설계)

  • 한근조;안찬우;전영환;심재준;한동섭;김병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1446-1449
    • /
    • 2003
  • In this study we analyze operation principle of wedge type rail clamp using in the harbor and when wind force applies to container crane, we calculate deformation in each part of rail clamp. As a result of calculation, we will design rail clamp supporter that forbid overload to be applied at rail clamp according to adjust climbing wedge distance of roller. It would be adapted various container capacity and wind velocity.

  • PDF