• Title/Summary/Keyword: Civil code

Search Result 1,178, Processing Time 0.022 seconds

Vibration behaviour of axially compressed cold-formed steel members

  • Silvestre, N.;Camotim, D.
    • Steel and Composite Structures
    • /
    • v.6 no.3
    • /
    • pp.221-236
    • /
    • 2006
  • The objective of this work is to describe the main steps involved in the derivation of a GBT (Generalised Beam Theory) formulation to analyse the vibration behaviour of loaded cold-formed steel members and also to illustrate the application and capabilities of this formulation. In particular, the paper presents and discusses the results of a detailed investigation about the local and global free vibration behaviour of lipped channel simply supported columns. After reporting some relevant earlier GBT-based results dealing with the buckling and vibration behaviours of columns and load-free members, the paper addresses mostly issues concerning the variation of the column fundamental frequency and vibration mode nature/shape with its length and axial compression level. For validation purposes, some GBT-based results are also compared with values obtained by means of 4-node shell finite element analyses performed in the code ABAQUS.

Progressive collapse analysis of steel building considering effects of infill panels

  • Zoghi, Mohammad Abbasi;Mirtaheria, Masoud
    • Structural Engineering and Mechanics
    • /
    • v.59 no.1
    • /
    • pp.59-82
    • /
    • 2016
  • Simplifier assumptions which are used in numerical studies of progressive collapse phenomenon in structures indicate inconsistency between the numerical and experimental full-scale results. Neglecting the effects of infill panels and two-dimensional simulation are some of these assumptions. In this study, an existing seismically code-designed steel building is analyzed with alternate path method (AP) to assess its resistance against progressive collapse. In the AP method, the critical columns be removed immediately and stability of the remaining structure is investigated. Analytical macro-model based on the equivalent strut approach is used to simulate the effective infill panels. The 3-dimentional nonlinear dynamic analysis results show that modeling the slabs and infill panels can increase catenary actions and stability of the structure to resist progressive collapse even if more than one column removed. Finally, a formula is proposed to determine potential of collapse of the structure based on the quantity and quality of the produced plastic hinges in the connections.

The soil effect on the seismic behaviour of reinforced concrete buildings

  • Yon, Burak;Calayir, Yusuf
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.133-152
    • /
    • 2015
  • This paper investigates the soil effect on seismic behaviour of reinforced concrete (RC) buildings by using the spread plastic hinge model which includes material and geometric nonlinearity of the structural members. Therefore, typical reinforced concrete frame buildings are selected and nonlinear dynamic time history analyses and pushover analyses are performed. Three earthquake acceleration records are selected for nonlinear dynamic time history analyses. These records are adjusted to be compatible with the design spectrum defined in Turkish Seismic Code. Interstory drifts and damages of selected buildings are compared according to local soil classes. Also, capacity curves of these buildings are compared with maximum responses obtained from nonlinear dynamic time history analyses. The results show that, soil class influences the seismic behaviour of reinforced concrete buildings, significantly.

Seismic upgrading of structures with different retrofitting methods

  • Guneyisi, Esra Mete;Azez, Ibrahim
    • Earthquakes and Structures
    • /
    • v.10 no.3
    • /
    • pp.589-611
    • /
    • 2016
  • This paper presents an analytical study aimed at evaluating the seismic performance of steel moment resisting frames (MRFs) retrofitted with different approaches. For this, 3, 6 and 12 storey MRFs having four equal bays of 5 m were selected as the case study models. The models were designed with lateral stiffness insufficient to satisfy code drift and hinge limitations in zones with high seismic hazard. Three different retrofit strategies including traditional diagonal bracing system and energy dissipation devices such as buckling restrained braces and viscoelastic dampers were used for seismic upgrading of the existing structures. In the nonlinear time history analysis, a set of ground motions representative of the design earthquake with 10% exceedance probability in fifty years was taken into consideration. Considering the local and global deformations, the results in terms of inter-storey drift index, global damage index, plastic hinge formations, base shear demand and roof drift time history were compared. It was observed that both buckling-restrained braces and viscoelastic dampers allowed for an efficient reduction in the demands of the upgraded frames as compared to traditional braces.

Knowledge-based learning for modeling concrete compressive strength using genetic programming

  • Tsai, Hsing-Chih;Liao, Min-Chih
    • Computers and Concrete
    • /
    • v.23 no.4
    • /
    • pp.255-265
    • /
    • 2019
  • The potential of using genetic programming to predict engineering data has caught the attention of researchers in recent years. The present paper utilized weighted genetic programming (WGP), a derivative model of genetic programming (GP), to model the compressive strength of concrete. The calculation results of Abrams' laws, which are used as the design codes for calculating the compressive strength of concrete, were treated as the inputs for the genetic programming model. Therefore, knowledge of the Abrams' laws, which is not a factor of influence on common data-based learning approaches, was considered to be a potential factor affecting genetic programming models. Significant outcomes of this work include: 1) the employed design codes positively affected the prediction accuracy of modeling the compressive strength of concrete; 2) a new equation was suggested to replace the design code for predicting concrete strength; and 3) common data-based learning approaches were evolved into knowledge-based learning approaches using historical data and design codes.

Dynamic analysis of laminated composite skew plates with cut-out

  • Mandal, Arpita;Haldar, Salil;Ray, Chaitali
    • Structural Engineering and Mechanics
    • /
    • v.68 no.6
    • /
    • pp.639-646
    • /
    • 2018
  • The aim of the present paper deals with free vibration analysis of laminated composite skew plates with single and multiple cut-outs. For complete understanding of the dynamic behavior of laminated skew plates with cut-out a numerical analysis has been carried out by developing a computer code in FOTRAN. Special attention is drawn on the formulation of mass matrix by considering effect of rotary inertia. The results obtained by the finite element formulation using nine noded isoparametric plate bending element are validated by comparing the results from relevant published literature. Few new results on laminated skew plates with cut-out have been presented.

Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks

  • Asteris, Panagiotis G.;Armaghani, Danial J.;Hatzigeorgiou, George D.;Karayannis, Chris G.;Pilakoutas, Kypros
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, surrogate approaches, such as artificial neural network models, have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the predicted values with the corresponding experimental ones, as well as with available formulas from previous research studies or code provisions highlight the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner. Furthermore, for the first time, the (quantitative) values of weights for the proposed neural network model, are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.

Impact of shear wall design on performance and cost of RC buildings in moderate seismic regions

  • Mahmoud, Sayed;Salman, Alaa
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.489-503
    • /
    • 2021
  • This research aims to investigate the seismic response of RC shear wall buildings of 5-, 6-, 7-, 8-, 9-, and 10-story designed as conventional and ductile and located in moderate seismic zone in Saudi Arabia in accordance with the seismic provisions of the American code ASCE-7-16. Dynamic analysis is conducted using the developed models in ETABS and the design spectra of the selected zone. The seismic responses of a number of design variations are evaluated in terms of story displacements, drift, shear and moments of both conventional and ductile building models as performance measures and presented comparatively. In addition, pushover analysis is also performed for the lowest and highest building models. Cost estimate of ductile and conventional walls is evaluated and compared to each other in terms of weight of reinforcement bars. In addition, due to the complexity of design and installation of ductile shear walls, sensitivity analysis is performed as well. It is observed that conventional design considerably increases induced seismic responses as well as cost compared to ductile one.

Seismic retrofitting and fragility for damaged RC beam-column joints using UHP-HFRC

  • Trishna, Choudhury;Prem P., Bansal
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.463-472
    • /
    • 2022
  • Reinforced concrete (RC) beam column joints (BCJ) have mostly exhibited poor seismic performance during several past earthquakes, typically due to the poor-quality concrete or lack of reinforcement detailing typical of pre-code design practice. The present study is motivated towards numerical simulation and seismic fragility assessment of one such RC-BCJ. The BCJ is loaded to failure and strengthened using Ultra High Performance-Hybrid Fiber Reinforced Concrete (UHP-HFRC) jacketing. The strengthening is performed for four different BCJ specimens, each representing an intermediate damage state before collapse. viz., slight, moderate, severe, and collapse. From the numerical simulation of all the BCJ specimens, an attempt is made to correlate different modelling and design parameters of the BC joint with respect to the damage states. In addition, seismic fragility analysis of the original as well as the retrofitted damaged BCJ specimens show the relative enhancement achieved in each case.

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.