Browse > Article
http://dx.doi.org/10.12989/cac.2019.24.5.469

Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks  

Asteris, Panagiotis G. (Computational Mechanics Laboratory, School of Pedagogical and Technological Education)
Armaghani, Danial J. (Institute of Research and Development, Duy Tan University)
Hatzigeorgiou, George D. (School of Science and Technology, Hellenic Open University)
Karayannis, Chris G. (Department of Civil Engineering, Democritus University of Thrace)
Pilakoutas, Kypros (Department of Civil and Structural Engineering, University of Sheffield)
Publication Information
Computers and Concrete / v.24, no.5, 2019 , pp. 469-488 More about this Journal
Abstract
In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, surrogate approaches, such as artificial neural network models, have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the predicted values with the corresponding experimental ones, as well as with available formulas from previous research studies or code provisions highlight the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner. Furthermore, for the first time, the (quantitative) values of weights for the proposed neural network model, are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.
Keywords
artificial neural networks; heuristic algorithm; reinforced concrete beams; stirrups; soft computing; shear strength;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Mohammadhassani, M., Nezamabadi-pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., 14(5), 785-809. http://dx.doi.org/10.12989/sss.2014.14.5.785.   DOI
2 Mohammadhassani, M., Saleh, A.M.D., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497.   DOI
3 NZS 3101 (2006), Concrete Structures Standard, Part 1 - The Design of Concrete Structures, New Zealand Standards, Wellington.
4 Oreta, A.W.C. (2004), "Simulating size effect on shear strength of RC beams without stirrups using neural networks", Eng. Struct., 26(5), 681-691. https://doi.org/10.1016/j.engstruct.2004.01.009.   DOI
5 Ozcan, F., Atis, C.D., Karahan, O., Uncuoǧlu, E. and Tanyildizi, H. (2009), "Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete", Adv. Eng. Softw., 40(9), 856-863. https://doi.org/10.1016/j.advengsoft.2009.01.005.   DOI
6 Papadopoulos, V., Giovanis, D.G., Lagaros, N.D. and Papadrakakis, M. (2012), "Accelerated subset simulation with neural networks for reliability analysis", Comput. Meth. Appl. Mech. Eng., 223-224, 70-80. https://doi.org/10.1016/j.cma.2012.02.013.   DOI
7 Placas, A. and Regan, P.E. (1971), "Shear failure of reinforced concrete beams", ACI J., 68(10), 763-773.
8 Plevris, V. and Asteris, P. (2015), "Anisotropic failure criterion for brittle materials using Artificial Neural Networks", COMPDYN 2015 - 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, 2259-2272.
9 Adeli, H. (2001), "Neural networks in civil engineering: 1989-2000", Compu. Aid. Civil Infrastr Eng., 16(2), 126-142. https://doi.org/10.1111/0885-9507.00219.   DOI
10 ACI Committee 318 (2015), Building Code Requirements for Reinforced Concrete, ACI 318M-14 and Commentary-ACI 318RM-14, American Concrete Institute, Farmington Hills, Michigan.
11 Sanad, A. and Saka, M.P. (2001), "Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks", J. Struct. Eng., 127(7), 818-828. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:7(818).   DOI
12 Plevris, V. and Asteris, P.G. (2014a), "Modeling of masonry compressive failure using Neural Networks", OPT-i 2014 - 1st International Conference on Engineering and Applied Sciences Optimization, 2843-2861.
13 Plevris, V. and Asteris, P.G. (2014b), "Modeling of masonry failure surface under biaxial compressive stress using Neural Networks", Constr. Build. Mater., 55, 447-461. https://doi.org/10.1016/j.conbuildmat.2014.01.041.   DOI
14 Robinson, J.R. (1968), "Internal CEB (Comlt- Europeen du Beton) correspondence", 12th Plenary Session, Lausanne, April.
15 Sarir, P., Chen, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.M. (2019), "Developing GEP tree-based, neuro-swarm, and whale optimization models for evaluation of bearing capacity of concrete-filled steel tube columns", Eng. Comput., 1-19. https://doi.org/10.1007/s00366-019-00808-y.
16 Sarveghadi, M., Gandomi, A.H., Bolandi, H. and Alavi, A.H. (2019), "Development of prediction models for shear strength of SFRCB using a machine learning approach", Neur. Comput. Appl., 31(7), 2085-2094. https://doi.org/10.1007/s00521-015-1997-6.   DOI
17 Seleemah, A.A. (2005), "A neural network model for predicting maximum shear capacity of concrete beams without transverse reinforcement", Can. J. Civil Eng., 32(4), 644-657. https://doi.org/10.1139/l05-003.   DOI
18 Seleemah, A.A. (2012), "A multilayer perceptron for predicting the ultimate", J. Civil Eng. Constr. Technol., 3(2), 64-79. https://doi.org/10.5897/JCECT11.098.
19 Tompos, E.J. and Frosch, R.J. (2002), "Influence of beam size, longitudinal reinforcement, and stirrup effectiveness on concrete shear strength", ACI J., 99(5), 559-567.
20 Akkurt, S., Tayfur, G. and Can, S. (2004), "Fuzzy logic model for the prediction of cement compressive strength", Cement Concrete Res., 34(8), 1429-1433. https://doi.org/10.1016/j.cemconres.2004.01.020.   DOI
21 Amani, J. and Moeini, R. (2012), "Prediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network", Scientia Iranica, 19(2), 242-248.   DOI
22 Angelakos, D., Bentz, E.C. and Collins, M.P. (2001), "Effect of concrete strength and minimum stirrups on shear strength of large members", ACI Struct. J., 98(3), 290-300.
23 Apostolopoulou, M., Armaghani, D.J., Bakolas, A., Douvika, M.G., Moropoulou, A. and Asteris, P.G. (2019), "Compressive strength of natural hydraulic lime mortars using soft computing techniques", Procedia Struct. Integ., 17, 914-923. https://doi.org/10.1016/j.prostr.2019.08.122.   DOI
24 Armaghani, D.J., Hatzigeorgiou, G.D., Karamani, Ch., Skentou, A., Zoumpoulaki, I. and Asteris, P.G. (2019), "Soft computingbased techniques for concrete beams shear strength", Procedia Struct. Integ., 17, 924-933. https://doi.org/10.1016/j.prostr.2019.08.123.   DOI
25 Armaghani, D.J., Mohamad, E.T., Narayanasamy, M.S., Narita, N. and Yagiz, S. (2017), "Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition", Tunnel. Underg. Space Technol., 63, 29-43. https://doi.org/10.1016/j.tust.2016.12.009.   DOI
26 Asteris, P.G. and Kolovos, K.G. (2019), "Self-compacting concrete strength prediction using surrogate models", Neur. Comput. Appl., 31(1), 409-424. https://doi.org/10.1007/s00521-017-3007-7.   DOI
27 Xie, Y., Ahmad, S.H., Yu, T., Hino, S. and Chung, W. (1994), "Shear ductility of reinforced concrete beams of normal and high-strength concrete", ACI J., 91(2), 140-149.
28 Topcu, I.B. and Saridemir, M. (2008), "Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 41(3), 305-311. https://doi.org/10.1016/j.commatsci.2007.04.009.   DOI
29 Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001.   DOI
30 Waszczyszyn, Z. and Ziemianski, L. (2001), "Neural networks in mechanics of structures and materials-New results and prospects of applications", Comput. Struct., 79(22-25), 2261-2276. https://doi.org/10.1016/S0045-7949(01)00083-9.   DOI
31 Xu, H., Zhou, J., Asteris, P.G., Armaghani, D.J. and Tahir, M.Md. (2019), "Supervised machine learning techniques to the prediction of tunnel boring machine penetration rate", Appl. Sci., 9(18), 3715. https://doi.org/10.3390/app9183715.   DOI
32 Yaseen, Z.M., Tran, M.T., Kim, S., Bakhshpoori, T. and Deo, R.C. (2018), "Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: A new approach", Eng. Struct., 177, 244-255. https://doi.org/10.1016/j.engstruct.2018.09.074.   DOI
33 Yavuz, G. (2016), "Shear strength estimation of RC deep beams using the ANN and strut-and-tie approaches", Struct. Eng. Mech., 57(4), 657-680. https://doi.org/10.12989/sem.2016.57.4.657.   DOI
34 Cladera, A. and Marí, A.R. (2004b), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part II: Beams with stirrups", Eng. Struct., 26(7), 927-936. https://doi.org/10.1016/j.engstruct.2004.02.011.   DOI
35 Chen, H., Asteris, P.G., Armaghani, D.J., Gordan, B. and Pham, B.T. (2019), "Assessing dynamic conditions of the retaining wall using two hybrid intelligent models", Appl. Sci., 9(6), 1042. https://doi.org/10.3390/app9061042.   DOI
36 Chen, Z. (2013), "An overview of Bayesian methods for neural spike train analysis", Comput. Intel. Neurosci., 2013, 251905. https://doi.org/10.1155/2013/251905.
37 Cladera, A. and Marí, A.R. (2004a), "Shear design procedure for reinforced normal and high-strength concrete beams using artificial neural networks. Part I: Beams without stirrups", Eng. Struct., 26(7), 917-926. https://doi.org/10.1016/j.engstruct.2004.02.010.   DOI
38 Clark, A.P. (1951), "Diagonal tension in reinforced concrete beams", ACI J., 48(2), 145-156.
39 CSA (2004), Design of Concrete Structures A23.3-04, Canadian Standards Association, Rexdale, Ontario.
40 Delen, D., Sharda, R. and Bessonov, M. (2006), "Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks", Accid. Anal. Prev., 38, 434-444. https://doi.org/10.1016/j.aap.2005.06.024.   DOI
41 Dias, W.P.S. and Pooliyadda, S.P. (2001), "Neural networks for predicting properties of concretes with admixtures", Constr. Build. Mater., 15(7), 371-379. https://doi.org/10.1016/S0950-0618(01)00006-X.   DOI
42 El Chabib, H., Nehdi, M. and Saïd, A. (2006), "Predicting the effect of stirrups on shear strength of reinforced normal-strength concrete (NSC) and high-strength concrete (HSC) slender beams using artificial intelligence", Can. J. Civil Eng., 33(8), 933-944. https://doi.org/10.1139/l06-033.   DOI
43 Asteris, P.G. and Plevris, V. (2017), "Anisotropic Masonry failure criterion using artificial neural networks", Neur. Comput. Appl., 28(8), 2207-2229. https://doi.org/10.1007/s00521-016-2181-3.   DOI
44 Yavuz, G. (2019), "Determining the shear strength of FRP-RC beams using soft computing and code methods", Comput. Concrete, 23(1), 49-60. https://doi.org/10.12989/cac.2019.23.1.049.   DOI
45 Yoon, Y.S., Cook, W.D. and Mitchell, D. (1996), "Minimum shear reinforcement in normal, medium and high-strength concrete beams", ACI J., 93(5), 576-584.
46 Zararis, P.D., Karaveziroglou, M.K., Zararis, I.P., Pnevmatikos, G. and Sfika, M. (2009), "Shear strength of very short over reinforced concrete beams", 16th Concrete Conference, Paphos, Cyprus, October. (in Greek)
47 Boger, Z. and Guterman, H. (1997), "Knowledge extraction from artificial neural network models", IEEE Systems, Man, and Cybernetics Conference, Orlando, FL, USA.
48 Russo, G., Mitri, D. and Pauletta, M. (2013). "Shear strength design formula for RC beams with stirrups", Eng. Struct., 51, 226-235.   DOI
49 Asteris, P.G. and Nikoo, M. (2019), "Artificial bee colony-based neural network for the prediction of the fundamental period of infilled frame structures", Neur. Comput. Appl., 1-11. https://doi.org/10.1007/s00521-018-03965-1.
50 Asteris, P.G. and Plevris, V. (2013), "Neural network approximation of the masonry failure under biaxial compressive stress", ECCOMAS Special Interest Conference-SEECCM 2013: 3rd South-East European Conference on Computational Mechanics, Proceedings-An IACM Special Interest Conference, 584-598.
51 Asteris, P.G., Apostolopoulou, M., Skentou, A.D. and Antonia Moropoulou, A. (2019d), "Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars", Comput. Concrete, 24(4), 329-345. https://doi.org/10.12989/cac.2019.24.4.329.   DOI
52 Asteris, P.G., Ashrafian, A. and Rezaie-Balf, M. (2019a), "Prediction of the compressive strength of self-compacting concrete using surrogate models", Comput. Concrete, 24(2), 137-150. https://doi.org/10.12989/cac.2019.24.2.137.   DOI
53 Flood, I. and Kartam, N. (1994), "Neural networks in civil engineering. I: Principles and understanding", J. Comput. Civil Eng., 8(2), 131-148. https://doi.org/10.1061/(ASCE)0887-3801(1994)8:2(131).   DOI
54 Asteris, P.G., Kolovos, K.G., Douvika, M.G. and Roinos, K. (2016a), "Prediction of self-compacting concrete strength using artificial neural networks", Eur. J. Environ. Civil Eng., 20, s102-s122. https://doi.org/10.1080/19648189.2016.1246693.   DOI
55 Asteris, P.G., Moropoulou, A., Skentou, A.D., Apostolopoulou, M., Mohebkhah, A., Cavaleri, L., Rodrigues, H. and Varum, H. (2019c), "Stochastic vulnerability assessment of masonry structures: Concepts, modeling and restoration aspects", Appl. Sci., 9(2), 243. https://doi.org/10.3390/app9020243.   DOI
56 Asteris, P.G., Nozhati, S., Nikoo, M., Cavaleri, L. and Nikoo, M. (2019b), "Krill herd algorithm-based neural network in structural seismic reliability evaluation", Mech. Adv. Mater. Struct., 26(13), 1146-1153. https://doi.org/10.1080/15376494.2018.1430874.   DOI
57 European Committee for Standardization CEN (2004), Eurocode 2: Design of concrete structures - Part 1-1: General Rules and Rules for Buildings, European Standard EN 1992-1-1.
58 Feldman, A. and Siess, C.P. (1955), "Effect of moment shear ratio on diagonal tension cracking and strength in shear of reinforced concrete beams", Univ. of Illinois Civil Eng. Studies, Struct. Research Series No. 107.
59 Fukuhara, M. and Kokusho, S. (1982), "Effectiveness of high tension shear reinforcement in reinforcedconcrete members", J. Struct. Constr. Eng., AIJ 320, 12-20.
60 Asteris, P.G., Tsaris, A.K., Cavaleri, L., Repapis, C.C., Papalou, A., Di Trapani, F. and Karypidis, D.F. (2016b), "Prediction of the fundamental period of infilled RC frame structures using artificial neural networks", Comput. Intel. Neurosci., 2016, 5104907. https://doi.org/10.1155/2016/5104907   DOI
61 Baykasoglu, A., Dereli, T.U. and Tanis, S. (2004), "Prediction of cement strength using soft computing techniques", Cement Concrete Res., 34(11), 2083-2090. https://doi.org/10.1016/j.cemconres.2004.03.028.   DOI
62 Berry, M.J.A. and Linoff, G. (1997), Data Mining Techniques, John Wiley & Sons, NY.
63 Blum, A. (1992), Neural Networks in C++, Wiley, NY.
64 Iruansi, O., Guadagnini, M., Pilakoutas, K. and Neocleous, K. (2010), "Predicting the shear strength of RC beams without stirrups using Bayesian neural network", Proceedings of the 4th International Workshop on Reliable Engineering Computing, Robust Design-Coping with Hazards, Risk and Uncertainty, Singapore, March.
65 Gandomi, A.H., Alavi, A.H., Gandomi, M. and Kazemi, S. (2017), "Formulation of shear strength of slender RC beams using gene expression programming, part II: With shear reinforcement", Measure., 95, 367-376. https://doi.org/10.1016/j.measurement.2016.10.024.
66 Ghannoum, W.M. (1998), "Size effect on shear strength of reinforced concrete beams", Master Thesis, Department of Civil Engineering and Applied Mechanics, McGill University, Montreal, Canada.
67 Giovanis, D.G. and Papadopoulos, V. (2015), "Spectral representation-based neural network assisted stochastic structural mechanics", Eng. Struct., 84, 382-394. https://doi.org/10.1016/j.engstruct.2014.11.044.   DOI
68 Ismail, K.S. (2009), "Strength prediction of struts in high-strength reinforced concrete deep beams by strut-and-tie model", Master Thesis, University of Salahaddin, Hawler, Iraq.
69 Cavaleri, L., Asteris, P.G., Psyllaki, P.P., Douvika, M.G., Skentou, A.D. and Vaxevanidis, N.M. (2019), "Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks", Appl. Sci., 9(14), 2788. https://doi.org/10.3390/app9142788.   DOI
70 Cavaleri, L. Chatzarakis, G.E., DiTrapani, F., Douvika, M.G., Foskolos, F.M., Fotos, Α., Giovanis, D.G., Karypidis, D.F., Livieratos, S., Roinos, K., Tsaris, A.K., Vaxevanidis, N.M., Vougioukas, E. and Asteris, P.G. (2016), "Surface roughness prediction of electro-discharge machined components using artificial neural networks", 5th International Conference on Integrity, Reliability and Failure, Faculty of Engineering, Porto, July.
71 Cavaleri, L., Chatzarakis, G.E., Di Trapani, F., Douvika, M.G., Roinos, K., Vaxevanidis, N.M. and Asteris, P.G. (2017), "Modeling of surface roughness in electro-discharge machining using artificial neural networks", Adv. Mater. Res., 6(2), 169-184. https://doi.org/10.12989/amr.2017.6.2.169.   DOI
72 Asteris, P.G., Roussis, P.C. and Douvika, M.G. (2017), "Feedforward neural network prediction of the mechanical properties of sandcrete materials", Sensor., 17(6), 1344. https://doi.org/10.3390/s17061344.   DOI
73 Kaveh, A., Bakhshpoori, T. and Hamze-Ziabari, S.M. (2018), "GMDH-based prediction of shear strength of FRP-RC beams with and without stirrups", Comput. Concrete, 22(2), 197-207. https://doi.org/10.12989/cac.2018.22.2.197.   DOI
74 Keskin, R.S.O. (2017), "Predicting Shear strength of SFRC slender beams without stirrups using an ANN model", Struct. Eng. Mech., 61(5), 605-615. https://doi.org/10.12989/sem.2017.61.5.605.   DOI
75 Kotsovou, G.M., Cotsovos, D.M. and Lagaros, N.D. (2017), "Assessment of RC exterior beam-column Joints based on artificial neural networks and other methods", Eng. Struct., 144, 1-18. https://doi.org/10.1016/j.engstruct.2017.04.048.   DOI
76 Lourakis, M.I.A. (2005), "A brief description of the Levenberg-Marquardt algorithm implemented by levmar", Institute of Computer Science Foundation for Research and Technology - Hellas (FORTH), http://www.ics.forth.gr/-lourakis/levmar/levmar.pdf.
77 Lamanna, J., Malgaroli, A., Cerutti, S. and Signorini, M.G. (2012), "Detection of fractal behavior in temporal series of synaptic quantal release events: A feasibility study", Comput. Intel. Neurosci., 2012, 704673. https://doi.org/10.1155/2012/704673.
78 Lee, S.C. (2003), "Prediction of concrete strength using artificial neural networks", Eng. Struct., 25(7), 849-857. https://doi.org/10.1016/S0141-0296(03)00004-X.   DOI
79 Londhe, R.S. (2011), "Shear strength analysis and prediction of reinforced concrete transfer beams in high-rise buildings", Struct. Eng. Mech., 37(1), 39-59. https://doi.org/10.12989/sem.2011.37.1.039.   DOI
80 Kani, G.N.J. (1967), "How safe are our large reinforced concrete beams?", ACI J., 64(3), 128-141.
81 Mansour, M.Y., Dicleli, M., Lee, J.Y. and Zhang, J. (2004), "Predicting the shear strength of reinforced concrete beams using artificial neural networks", Eng. Struct., 26(6), 781-799. https://doi.org/10.1016/j.engstruct.2004.01.011.   DOI