• 제목/요약/키워드: Civil Infrastructures

검색결과 303건 처리시간 0.021초

초생대를 이용한 산지유역 토사유출 저감에 관한 연구 (Study on Sediment Runoff Reduction using Vegetative Filter Strips in a Mountainous Watershed)

  • 손광익;김형준;임경재;정영훈
    • 한국물환경학회지
    • /
    • 제31권4호
    • /
    • pp.407-417
    • /
    • 2015
  • Soil loss is one of the significant disasters which have threatened human community and ecosystem. Particularly, Korea has high vulnerability of soil loss because rainfall is concentrated during summer and mountainous regions take more than 70% of total land resources. Accordingly, the sediment control management plan are required to prevent the loss of soil resources and to improve water quality in the receiving waterbodies. In this regard, the objectives of this study are 1) to quantify the effect of the Vegetative Filter Strip (VFS) on sediment runoff reduction and 2) to analyze the relationship of rainfall intensity and sediment runoff. For this, SATEEC and VFSMOD were used to estimate sediment runoff according to rainfall intensity and to quantify the effect of VFS on sediment runoff reduction, respectively. In this study, the VFS has higher impact on sediment reduction for lower maximum rainfall intensity, which means that the maximum rainfall intensity is one of significant factors to control sediment runoff. Also, the sediment with VFS considered was highly correlated with maximum rainfall intensity. For these results, this study will contribute to extend the applicability of VFS in establishing eco-friendly sediment control plans.

사회기반시설물의 내진 보강을 위한 연성재-FRP적층복합체의 역학적 거동 특성 분석: Part-I 인장 거동 (Characterization of Metal-FRP Laminated Composites for Strengthening of Structures: Part-I Tensile Behavior)

  • 박철우
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.54-63
    • /
    • 2011
  • Steel plate or FRP materials have been typically used for the seismic retrofit of civil infrastructures. In order to overcome the limitation of each retrofitting material, a composite material, which takes advantages from both metal and fiber polymer materials, has been developed. In the study herein, the composite retrofitting material consists of metal part(steel or aluminum) and FRP sheet part(glass or carbon fiber). The metal part can enhance the ductility and the FRP part the ultimate strength. As a preliminary study to investigate the fundamental mechanical characteristics of the metal-FRP laminated composite material this study performed the tensile test with various experimental variables including the number, the angle and the combination of FRP laminates. From the test results, both aluminum and steel-FRP laminate composite material showed increased fracture toughness. However, the angle and the kind of fibers should be carefully considered in conjunction with the expected loading conditions. In general, steel-FRP laminate composite showed better tensile performance in regards to the seismic retrofit purposes.

Effect of particle size and saturation conditions on the breakage factor of weak rockfill materials under one-dimensional compression testing

  • Rahmani, Hamidreza;Panah, Ali Komak
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.315-326
    • /
    • 2020
  • The long-term behavior of rockfill material used in the construction of infrastructures such as dams is of great significance. Because of concerns about the application of weak rockfill material in dam construction, further experimental studies on the behavior of these materials are required. In this study, laboratory experiments were performed to investigate the one-dimensional deformation and particle breakage of the weak rockfill material under stress. A one-dimensional compression apparatus was designed and developed for testing of rockfill materials of different maximum particle sizes (MPSs). The compression tests were performed under dry, wet and saturated conditions on samples of rockfill material obtained from a dam construction site in Iran. The results of the experiments conducted at the specimen preparation stage and the 1D compression tests are presented. In weak rockfill, the effect of the addition of water on the behavior of the material was uncertain as there were both an increases and decreases observed in particle breakage. Increasing the MPS of the weak rockfill materials increased particle breakage, which was similar to the behavior of strong rockfill material. In all of the MPSs examined, the settlement of specimens under wet conditions was higher than that observed under dry conditions. Also, the greatest deformation occurred during the first hour of loading.

Shaking table tests on a SDOF structure with cylindrical and rectangular TLDs having rotatable baffles

  • Zahrai, Seyed Mehdi;Kakouei, Sirous
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.391-401
    • /
    • 2019
  • Control of vibrations against extraordinary excitations such as wind and earthquake is very important to the protection of life and financial concerns. One of the methods of structural control is to use Tuned Liquid Damper (TLD), however due to the nature of TLD only one sloshing frequency can be created when the water is sloshing. Among various ideas proposed to compensate this problem, by changing the angle of some rotatable baffles embedded inside a TLD, a frequency range is created such that these baffles are tuned manually at different frequencies. In this study, the effect of cross sectional shape of container with rotating baffles on seismic behavior of TLD is experimentally studied. For this purpose, rectangular and cylindrical containers are designed and used to suppress the vibrations of a Single Degree-Of-Freedom (SDOF) structure under harmonic and earthquake excitations considering three baffle angles. The results show that the rectangular-shaped damper reduces the structural response in all load cases more than the damper with a cylindrical shape, such that maximum differences of two dampers to reduce the structural displacement and structural acceleration are 5.5% and 3% respectively, when compared to the cases where no baffles are employed.

Rehabilitation of corroded circular hollow sectional steel beam by CFRP patch

  • Setvati, Mahdi Razavi;Mustaffa, Zahiraniza
    • Steel and Composite Structures
    • /
    • 제32권1호
    • /
    • pp.127-139
    • /
    • 2019
  • Bridges, offshore oil platforms and other infrastructures usually require at some point in their service life rehabilitation for reasons such as aging and corrosion. This study explores the application of adhesively bonded CFRP patches in repair of corroded circular hollow sectional (CHS) steel beams. An experimental program involving three-point bending tests was conducted on intact, corroded, and repaired CHS beams. Meso-scale finite element (FE) models of the tested beams were developed and validated by the experimental results. A parametric study using the validated FE models was performed to examine the effects of different CFRP patch parameters, including patch dimensions, number of plies and stacking sequence, on efficiency of the repair system. Results indicates that the corrosion reduced elastic stiffness and flexural strength of the undamaged beam by 8.9 and 15.1%, respectively, and composite repair recovered 10.7 and 18.9% of those, respectively, compared to undamaged beam. These findings demonstrated the ability of CFRP patch repair to restore full bending capacity of the corroded CHS steel beam. The parametric study revealed that strength and stiffness of the repaired CHS beam can be enhanced by changing the fiber orientations of wet composite patch without increasing the quantity of repair materials.

Aspects Of Architectural Design Using BIM Technologies

  • Tikhonova, Oleksandra;Selikhova, Yana;Donenko, Vasyl;Kulik, Mykhailo;Frolov, Denys;Iasechko, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.85-92
    • /
    • 2022
  • In this article, we look at the application of BIM (Building Information Modeling) in sustainable infrastructures. In response to global warming, energy shortages, and environmental degradation, people are trying to build eco-friendly, low-carbon cities and promote eco-friendly homes. A "green" building is the entire life cycle of a building that includes maximizing the conservation of resources (energy, water, land, and materials), protecting the environment, reducing pollution, providing people with healthy, comfortable, and efficient use of space, and establishing harmony between nature and architecture. In the field of ecological and sustainable buildings, BIM modeling can be integrated into buildings with analog energy, air flow analysis, and solar building ecosystems. Using BIM technologies, you can reduce the amount of waste and improve the quality of construction. These technologies create "visualization" of digital building models through multidimensional digital design solutions that provide" modeling and analysis "of Scientific Collaboration Platforms for designers, architects, utility engineers, developers, and even end users. Moreover, BIM helps them use three-dimensional digital models in project design and construction and operational management.

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements

  • Mamen, Belgacem;Hammoud, Farid
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.275-282
    • /
    • 2021
  • Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.

Shape effect on axially loaded CFDST columns

  • R, Manigandan;Kumar, Manoj
    • Steel and Composite Structures
    • /
    • 제43권6호
    • /
    • pp.759-772
    • /
    • 2022
  • Concrete-filled double skinned steel tubular (CFDST) columns have been used to construct modern structures such as tall buildings and bridges as well as infrastructures as they provide better, lesser weight, and greater stiffness in structural performance than conventional reinforced concrete or steel members. Different shapes of CFDST columns may be needed to satisfy the architectural and aesthetic criteria. In the study, three-dimensional FE simulations of circular and elliptical CFDST columns under axial compression were developed and verified through the experimental test data from the perspectives of full load-displacement histories, ultimate axial strengths, and failure modes. The verified FE models were used to investigate and compare the structural performance of CFDST columns with circular and elliptical cross-section shapes by evaluating the overall load-deformation curves, interaction stress-deformation responses, and composite actions of the column. At last, the accuracy of available design models in predicting the ultimate axial strengths of CFST columns were investigated. Research results showed that circular and elliptical CFDST column behaviors were generally similar. The overall structural performance of circular CFDST columns was relatively improved compared to the elliptical CFDST column.

춘천시에서 발생한 산사태 유발강우의 특성 분석 (Characteristics of Rainfall Thresholds for the Initiation of Landslides at Chuncheon Province)

  • 김상욱;백경오
    • 한국안전학회지
    • /
    • 제37권6호
    • /
    • pp.148-157
    • /
    • 2022
  • Every year, particularly during the monsoon rainy season, landslides at the Chuncheon province of South Korea cause tremendous damage to lives, properties, and infrastructures. More so, the high rainfall intensity and long rainfall days that occurred in 2020 have increased the water content in the soil, thereby increasing the chances of landslide occurrences. Besides this, the rainfall thresholds and characteristics responsible for the initiation of landslides in this region have not been properly identified. Therefore, this paper addresses the rainfall thresholds responsible for the initiation of landslides at Chuncheon from a regional perspective. Using data obtained from rainfall measurements taken from 2002 to 2011, we identify a threshold relationship between rainfall intensity and rainfall duration for the initiation of landslides. In addition, we identify the relationship between the rainfall intensity using a 3-day, 7-day, and 10-day antecedent rainfall observation. Specifically, we estimate the rainfall data at 8 sites where debris flow occurred in 2011 by kriging. Following this, the estimated data are used to construct the relationship between the intensity (I), duration (D), and frequency (F) of rainfall. The results of the intensity-duration-frequency (IDF) analysis show that landslides will occur under a rainfall frequency below a 2-year return period at two areas in Chuncheon. These results will be effectively used to design structures that can prevent the occurrence of landslides in the future.

Flood Frequency Analysis with the consideration of the heterogeneous impacts from TC and non-TC rainfalls: application to daily flows in the Nam River Basin, South Korea

  • Alcantara, Angelika;Ahn, Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.121-121
    • /
    • 2020
  • Varying dominant processes, including Tropical Cyclone (TC) and non-TC rainfall events, have been known to drive the occurrence of precipitation in South Korea. With the changes in the pattern of the Earth's climate due to anthropogenic activities, nonstationarity or changes in the magnitude and frequency of these dominant processes have been separately observed for the past decades and are expected to continue in the coming years. These changes often cause unprecedented hydrologic events such as extreme flooding which pose a greater risk to the society. This study aims to take into account a more reliable future climate condition with two dominant processes. Diverse statistical models including the hidden markov chain, K-nearest neighbor algorithm, and quantile mappings are utilized to mimic future rainfall events based on the recorded historical data with the consideration of the varying effects of TC and non-TC events. The data generated is then utilized to the hydrologic model to conduct a flood frequency analysis. Results in this study emphasize the need to consider the nonstationarity of design rainfalls to fully grasp the degree of future flooding events when designing urban water infrastructures.

  • PDF