Browse > Article
http://dx.doi.org/10.12989/gae.2021.25.4.275

Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements  

Mamen, Belgacem (Department of Civil Engineering, Faculty of Science and Technology, University Abbes Laghrour of Khenchela)
Hammoud, Farid (Department of Civil Engineering, Faculty of Technology, University Mustapha Ben Boulaid of Batna)
Publication Information
Geomechanics and Engineering / v.25, no.4, 2021 , pp. 275-282 More about this Journal
Abstract
Failure mechanism which can affect geotechnical infrastructures (shallow foundations, retaining walls, and piles) constitutes one of the most encountered problems during the design process. In this respect, the shear behavior of interfaces between grained soils and solid building materials, as well as those between cohesive soils should be investigated. Therefore, a range of ring shear tests with different cohesive soils and stainless-steel interfaces have been carried out through the Bromhead apparatus that allows simulating large displacements along a failure surface. The effects of steel rings roughness and soil type on the residual friction coefficient and the shear zone features (structure, thickness, and texture orientation angle) have been investigated using the Scanning Electron Microscopy. The obtained results indicate that the residual friction coefficient and the structural characteristics of the shear zone vary according to the surface roughness and the soil type. Scanning electron microscopy reveals that the particles inside the shear zone tend to be re-oriented. Also, the shear failure mechanism can be identified along with the interface, within the soil, or simultaneously at the interface and within the soil specimen.
Keywords
failure mechanism; Bromhead apparatus; large displacements; cohesive soils; shear zone features; surface roughness;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Torabi, A., Braathen, A., Cuisiat, F. and Fossen, H. (2007), "Shear zones in porous sand: Insights from ring-shear experiments and naturally deformed sandstones", Tectonophysics, 437(1-4), 37-50. http://doi.org/10.1016/j.tecto.2007.02.018.   DOI
2 Tsubakihara, Y., Kishida, H. and Nishiyima, T. (1993), "Friction between cohesive soils and steel", Soils Found., 33(2), 145-146. http://doi.org/10.1016/0148-9062(94)92910-6.   DOI
3 Wafid Agung, M., Sassa, K., Fukuoka, H. and Wang, G. (2004), "Evolution of shear-zone structure in undrained ring-shear tests", Landslides, 1, 101-112. https://doi.org/10.1007/s10346-004-0001-9.   DOI
4 Sadrekarimi, A. and Olson, S.M. (2010), "Particle damage observed in ring shear tests on sands", Can. Geotech. J., 47(5), 497-515. http://doi.org/10.1139/t09-117.   DOI
5 Al-Bared, M.A.M., Harahap, I.S.H, Marto, A., Alavi Nezhad Khalil Abad, S.V. and Montasir, O.A.A. (2019), "Undrained shear strength and microstructural characterization of treated soft soil with recycled materials", Geomech. Eng., 18(4), 427-437, http://doi.org/10.12989/gae.2019.18.4.427.   DOI
6 Lemos, L.J.L. and Vaughan, P.R. (2000), "Clay-interface shear resistance", Geotechnique, 50(1), 55-64. http://doi.org/10.1680/geot.2000.50.1.55.   DOI
7 Lupini, J.F., Skinner, A.E. and Vaughan, P.R. (1981), "The drained residual strength of cohesive soils", Geotechnique, 31(2), 181-213. http://doi.org/10.1680/geot.1981.31.2.181.   DOI
8 ASTM D6467-13e1 (2013), Standard Test Method for Torsional Ring Shear Test to Determine Drained Residual Shear Strength of Cohesive Soils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
9 Li, Y.R. and Aydin, A. (2013), "Shear zone structures and stress fluctuations in large ring shear tests", Eng. Geol., 167, 6-13. http://doi.org/10.1016/j.enggeo.2013.10.001.   DOI
10 Khosravi, M., Meehan, C., Cacciola, D. and Khosravi, A. (2013), "Effect of fast shearing on the residual shear strengths measured along pre-existing shear surfaces in kaolinite", Proceedings of the Geo-Congress, San Diego, California, U.S.A., March.
11 Fukuoka, H., Sassa, K., Wang, G. and Sasaki, R. (2006), "Observation of shear zone development in ring-shear apparatus with a transparent shear box", Landslides, 3(3), 239-251. http://doi.org/10.1007/s10346-006-0043-2.   DOI
12 Mandl, G., de Jong, L.N.J. and Maltha, A. (1977), "Shear zones in granular material-an experimental study of their structure and mechanical genesis", Rock Mech., 9, 95-144. http://doi.org/10.1016/0148-9062(77)90973-1.   DOI
13 Wang, F., Sassa, K. and Wang, G. (2002), "Mechanism of a long-runout landslide triggered by the August 1998 heavy rainfall in FukushimaPrefecture", Eng. Geol., 63(1-2), 169-185. http://doi.org/10.1016/s0013-7952(01)00080-1.   DOI
14 Wang, L., Han, J., Yin, X. and Songyang, L. (2020), "Effect of moisture content and shearing speed on shear zone structure in fine-grained soils at large displacement", Arab. J. Geosci., 13(6), 1-11. https://doi.org/10.1007/s12517-020-5237-8.   DOI
15 Wei, H., Zhao, T., He, J., Meng, Q. and Wang, X. (2018), "Evolution of particle breakage for calcareous sands during ring shear tests", Int. J. Geomech., 18(2), 04017153, http://doi.org/10.1061/(ASCE)gm.1943-5622.0001073.   DOI
16 Wan, Y. and Kwong, J. (2002), "Shear strength of soils containing amorphous clay-size materials in a slow-moving landslide", Eng. Geol., 65(4), 293-303. http://doi.org/10.1016/s0013-7952(01)00139-9.   DOI
17 Wu, X. and Yang, J. (2017), "Tests of the interface between structures and filling soil of mountain area airport", Geomech. Eng., 12(3), 399-415. http://doi.org/10.12989/gae.2017.12.3.399.   DOI
18 Xu, C., Wang, X., Lu, X., Dai, F. and Jiao, S. (2018), "Experimental study of residual strength and the index of shear strength characteristics of clay soil", Eng. Geol., 233, 183-190. http://doi.org/10.1016/j.enggeo.2017.12.004.   DOI
19 Li, Y.R., Aydin, A., Xu, Q. and Chen, J. (2012), "Constitutive Behavior of binary mixtures of kaolin and glass beads in direct shear", KSCE J Civ. Eng., 16(7), 1152-1159. http://doi.org/10.1007/s12205-012-1613-6.   DOI
20 Mamen, B., Kolli, M., Ouedraogo, E., Hamidouche, M., Djoudi, H. and Fanttozi, G. (2018) "Experimental characterisation and numerical simulation of the thermomechanical damage behaviour of kaolinitic refractory materials", J. Australian Ceramic Soc., 55, 555-565. | http://doi.org/10.1007/s41779-018-0262-8.   DOI
21 Meehan, C.L., Brandon, T.L. and Duncan, J.M. (2007), "Measuring drained residual strengths in the Bromhead ring shear", Geotech. Test. J., 30(6), 466-473. http://doi.org/10.1520/GTJ101017.   DOI
22 ASTM D854-14 (2014), Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
23 Morgenstern, N. and Tchalenko, J.S. (1969), "Microscopic structures in kaolin subjected to direct shear", Geotechnique, 19(3), 426-327. http://doi.org/10.1680/geot.1969.19.3.426.   DOI
24 Lee, S., Chang, I., Chung, M.K., Kim, Y. and Kee, J. (2017), "Geotechnical shear behavior of Xanthan Gum biopolymer treated sand from direct shear testing", Geomech. Eng., 12(5), 831-847, http://doi.org/10.12989/gae.2017.12.5.831.   DOI
25 Srivastava, D.K., Sahu, V. and Raghavendra, H.B. (2020), "Forensic study of slope failure case during heavy rainfall: Suggested preventative and remedial measures", Geotech. Geol. Eng., 38, 3697-3707. https://doi.org/10.1007/s10706-020-01247-z.   DOI
26 Suzuki, M., Van Hai, N. and Yamamoto, T. (2017), "Ring shear characteristics of discontinuous plane", Soils Found., 57(1), 1-22, https://doi.org/10.1016/j.sandf.2017.01.001.   DOI
27 Takizawa S., Kamai T. and Matsukura Y. (2005), "Fluid pathways in the shearing zones of kaolin subjected to direct shear tests", Eng. Geol., 78, 135-142, http://doi.org/10.1016/j.enggeo.2004.12.002.   DOI
28 Thakur, V. (2007), "Strain localization in sensitive soft clays", Ph.D. Dissertation, Norwegian University of Science and Technology, Trondheim, Norway.
29 Li, D., Yin, K., Glade, T. and Chin, L. (2017), "Effect of over-consolidation and shear rate on the residual strength of soils of silty sand in the Three Gorges Reservoir", Sci. Rep., 7, 5503, https://doi.org/10.1038/s41598-017-05749-4.   DOI
30 ASTM D6913M-17 (2017), Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
31 Chen, J., Dai, F., Xu, L., Chen, S., Wang, P., Long, W. and Shen, N. (2014), "Properties and microstructure of a natural slip zone in loose deposits of red beds, southwestern China", Eng. Geol., 183, 53-64. http://doi.org/10.1016/j.enggeo.2014.10.004.   DOI
32 Coop, M.R., Sorensen, K.K., Bodas Freitas, T. and Georgoutsos, G. (2004), "Particle breakage during shearing of a carbonate sand", Geotechnique, 54(3), 157-163, http://doi.org/10.1680/geot.2004.54.3.157.   DOI
33 Eid, H.T., Al-Nohmi, N.M., Wijewickreme, D. and Amarasinghe, R.S. (2019), "Drained peak and residual interface shear strengths of fine-grained soils for pipeline geotechnics", J. Geotech. Geoenviron. Eng., 145(10), 06019010. http://doi.org/10.1061/(ASCE)gt.1943-5606.0002131.   DOI
34 Eid, H.T., Amarasinghe, R.S., Rabie, K.H. and Wijewickreme, D. (2015), "Residual shear strength of fine-grained soils and soil-solid interfaces at low effective normal stresses", Can. Geotech. J., 52(2), 198-210. https://doi.org/10.1139/cgj-2014-0019.   DOI
35 Feligha, M., Hammoud, F., Belachia, M. and Nouaouria, M.S. (2015), "Experimental investigation of frictional behavior between cohesive soils and solid materials using direct shear apparatus", Geotech. Geol. Eng., 34(2), 567-578, http://doi.org/10.1007/s10706-015-9966-5.   DOI
36 Hicher, P., Wahyudi, H. and Tessier, D. (1995), "Microstructural analysis of strain localisation in clay", Int. J. Rock Mech. Min. Sci. Geomech., 31(1), A26. http://doi.org/10.1016/0148-9062(95)90196-5.   DOI
37 Grelle, G. and Guadagno, F.M. (2010), "Shear mechanisms and viscoplastic effects during impulsive shearing", Geotechnique, 60(2), 91-103. http://doi.org/10.1680/geot.8.p.019.   DOI
38 Duong, N.T., Suzuki, M. and Van Hai, N. (2018), "Rate and acceleration effects on residual strength of kaolin and kaolin-bentonite mixtures in ring shearing", Soils Found., 58(5), 1153-1172. http://doi.org/10.1016/j.sandf.2018.05.011.   DOI
39 Han, W.J., Kim, S.Y., Lee, J.S. and Byun, Y.H. (2019), "Friction behavior of controlled low strength material-soil interface", Geomech. Eng., 18(4), 407-415. http://doi.org/10.12989/gae.2019.18.4.407.   DOI
40 Heidemann, M., Bressani, L.A. and Flores, J.A. (2020), "Residual shear strength of a residual soil of granulite", Soils Rocks, 43(1), 31-41. http://doi.org/10.28927/SR.431031.   DOI
41 Hoyos, L.R., Velosa, C.L. and Puppala, A.J. (2011), "A servo/suction-controlled ring shear apparatus for unsaturated soils: Development, performance, and preliminary results", Geotech. Test. J., 34(5), 1-11. http://doi.org/10.1520/GTJ103598.   DOI
42 ASTM D4318-17e1 (2017), Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Doils, ASTM International, West Conshohocken, Pennsylvania, U.S.A.
43 Jiang, Y., Wang, G. and Kamai, T. (2016), "Fast shear behavior of granular materials in ring-shear tests and implications for rapid landslides", Acta Geotech., 12(3), 645-655. http://doi.org/10.1007/s11440-016-0508-y.   DOI
44 Kimura, S., Nakamura, S., Vithana, S.B. and Sakai, K. (2013), "Shearing rate effect on residual strength of landslide soils in the slow rate range", Landslides, 11(6), 969-979, http://doi.org/10.1007/s10346-013-0457-6.   DOI