• Title/Summary/Keyword: Circumferential Stress

Search Result 223, Processing Time 0.019 seconds

Examination and Improvement of Accuracy of Three-Dimensional Elastic Crack Solutions Obtained Using Finite Element Alternating Method (유한요소 교호법으로 구한 삼차원 균열 탄성해의 정확성 향상 및 검토)

  • Park, Jai-Hak;Nikishkov, G.P.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.629-635
    • /
    • 2010
  • An SGBEM (symmetric Galerkin boundary element method)-FEM alternating method has been proposed by Nikishkov, Park and Atluri. This method can be used to obtain mixed-mode stress intensity factors for planar and nonplanar three-dimensional cracks having an arbitrary shape. For field applications, however, it is necessary to verify the accuracy and consistency of this method. Therefore, in this study, we investigate the effects of several factors on the accuracy of the stress intensity factors obtained using the abovementioned alternating method. The obtained stress intensity factors are compared with the known values provided in handbooks, especially in the case of internal and external circumferential semi-elliptical surface cracks. The results show that the SGBEM-FEM alternating method yields accurate stress intensity factors for three-dimensional cracks, including internal and external circumferential surface cracks and that the method can be used as a robust crack analysis tool for solving field problems.

Structure Analysis of Manufactured Goods with DNC (DNC 가공품의 구조해석)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.19-25
    • /
    • 1998
  • This paper discuss to structure analysis of manufactured goods with DNC. DNC procedure is using CAD, CAM software and CNC machining center. CAM software is purpose of G-code generation for CNC programming. For structure analysis used to result from FEM code and the object of analysis is thincylinder.

  • PDF

A modified shell-joint model for segmental tunnel dislocations under differential settlement

  • Jianguo Liu;Xiaohui Zhang;Yuyin Jin;Wenyuan Wang
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.411-424
    • /
    • 2023
  • Reasonable estimates of tunnel lining dislocations in the operation stage, especially under longitudinal differential settlement, are important for the design of waterproof gaskets. In this paper, a modified shell-joint model is proposed to calculate shield tunnel dislocations under longitudinal differential settlement, with the ability to consider the nonlinear shear stiffness of the joint. In the case of shell elements in the model, an elastoplastic damage constitutive model was adopted to describe the nonlinear stress-strain relationship of concrete. After verifying its applicability and correctness against a full-scale tunnel test and a joint shear test, the proposed model was used to analyze the dislocation behaviors of a shield tunnel in Shanghai Metro Line 2 under longitudinal differential settlement. Based on the results, when the tunnel structure is solely subjected to water-earth load, circumferential and longitudinal joint dislocations are all less than 0.1 mm. When the tunnel suffers longitudinal differential settlement and the curvature radius of the differential settlement is less than 300 m, although maximum longitudinal joint dislocation is still less than 0.1 mm, the maximum circumferential joint dislocation is approximately 10.3 mm, which leads to leakage and damage of the tunnel structure. However, with concavo-convex tenons applied to circumferential joints, the maximum dislocation value reduces to 4.5 mm.

The Study on the Diameter Ratio of the Artery-PTFE Anastomosis for the Optimized Deformed Shape (변형후 형상의 최적화를 위한 동맥과 PTFE 문합의 직경비 연구)

  • 이성욱;심재준;한근조
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.113-119
    • /
    • 2003
  • In this paper we introduced optimized deformed shape to prevent the blood vessel disease caused by the discord of deformed shape in the end-to-end anastomosis. This study considered the preliminary deformed shape induced by suture in the anastomosis of artery and PTFE, artificial blood vessel, with different diameters. Then we analyzed the final deformed shape of the anastomotic part under the systolic blood pressure. 120mmHg(16.0kPa). The final deformed shape of the anstomotic part was analyzed with respect to the change of initial diameter ratio(R$_{I}$) and the PTFE thickness. Equivalent and circumferential stresses induced by the systolic blood pressure in the anastomosis were also analyzed with respect to the initial diameter ratio(R$_{I}$). The results obtained were as follows : 1. Considering the preliminary deformed shape induced by suture and the systolic pressure in the anastomosis, not intimal hyperplasia, the optimal initial diameter ratio(R$_{I}$) was 1.073. 2. As the initial diameter ratio(R$_{I}$) became larger, higher equivalent and circumferential stresses were induced. And all the maximum stresses occurred on the side of PTFE 0.4mm apart from the anastomosis.

Crack Growth Life Prediction of Hollow Shaft with Circumferential Through Type Crack by Torsion (원주방향 관통형 균열을 가지는 중공축의 비틀림에 의한 균열성장수명 예측)

  • Yeonhi Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.1-8
    • /
    • 2023
  • Power transmission shafts in rotary wing aircraft use a hollow shaft to reduce weight. We can apply linear elastic fracture mechanics to predict crack propagation behavior. This paper predicted crack growth life of a hollow shaft with a circumferential through-type crack by finite element analysis. A 2D finite element model was created by applying a torsion and forming elements considering cracks. We defined the initial crack length and performed the finite element analysis by increasing the crack length to derive stress intensity factor at crack tips. We defined the length just prior to the stress intensity factor exceeding the fracture toughness as the crack limit length. We calculated the crack limit length using a handbook and numerically integrated the crack growth rate equation to derive growth life of each crack. The growth life of each crack was compared to verify the proposed finite element analysis method.

A Study on the Welding Pressure of Extrusion Processing of Hollow Tube Using the Porthole Die with the Different Chamber Shape (포트홀 다이를 이용한 중공튜브 압출 제품의 다이 챔버 형상에 따른 결합력에 대한 연구)

  • Kim M. G.;Jin I. T.;Jeung Y. D.;Ha M. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.110-114
    • /
    • 2001
  • The welding pressure in porthole die extrusion is affected by the shape of welding chamber. It is very important to increase the welding pressure when the tube is used particulary as the materials of hydroforming processing. The high circumferential stress of the tube would make the welding pressure increase during the porthole die extrusion. In order to increase the circumferential stress, it is necessary to make the billets pass through the narrow gap between the conical die and the conical mandrel. This paper describes the welding pressure by the experiments with the two types of the chamber. One of them is the chamber between the flat die and straight mandrel, and the other one is the chamber between the conical die and conical mandrel. The result of the experiments show that the conical chamber makes the welding pressure increase by the effect of the reducing the diameteres of tube.

  • PDF

Effect of Restraint of Pressure Induced Bending on Crack Opening Evaluation for Circumferential Through-Wall Cracked Pipe (원주방향 관통균열 배관의 균열열림 평가에 미치는 압력유기굽힘의 구속효과)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1873-1880
    • /
    • 2001
  • The effects of restraint of pressure induced bending(PIB) on crack opening for circumferential through-wall crack in a pipe were investigated. In this study, the elastic and elastic-plastic finite element analyses were performed to evaluate crack opening displacement(COD) for various restraint conditions and crack size. The results showed the restraint of PIB decreased crack opening for a given crack size and tensile stress, and the decrease in crack opening was considerable for large crack and short restraint length. A1so, the effect was more significant in tole results of elastic-plastic analysis compared with in the elastic analysis results. In the elastic-plastic analysis results, tole restraint effect was increased with increasing applied tensile stress corresponding to internal pressure. Additionally, the restraint effect on COD was independent on the variation in pipe diameter and decreased with increasing pipe thickness, and It depended on not total restraint length but shorter restraint length for non-symmetrically restrained.

Fatigue Crack Initiation around a Hole under Out-of-phase Biaxial Loading (이상 이축 하중 하에서 구멍 주위에서의 피로 균열 발생)

  • Huh, Yong-Hak;Park, Pi-Lip;Kim, Dong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1695-1702
    • /
    • 2003
  • Fatigue crack initiation around a hole subjected to biaxial fatigue loads with a phase difference was investigated. Axial and torsional biaxial fatigue loads with different phase differences and biaxiality of 1/√3 were applied to thin-walled tubular specimens. Five phase differences of 0, 45, 90, 145 and 180 degrees were selected. Directions of the fatigue crack initiation around the hole were found to approach to the circumferential direction of the specimen with increment of the phase difference for fatigue tests with phase differences less than 90$^{\circ}$. Whereas directions for tests with phase differences greater than 90$^{\circ}$ got away from the circumferential direction and those were symmetric to the directions for tests with phase difference less than 90. . Furthermore, it was shown that the fatigue initiation life decreased with increment of phase difference for fatigue tests with phase differences less than 90$^{\circ}$, but it increased for tests with phase difference greater than 90$^{\circ}$. The crack initiation direction can be successfully explained by using the direction of the maximum tangential stress range obtained around the hole and at far-field.

Experimental Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 1) - (동적하중 하에서의 강도적 불균질재의 연성크랙 발생거동의 실험적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제1보) -)

  • ;Mitsuru Ohata;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.575-581
    • /
    • 2003
  • It has been well known that the ductile cracking of steel would be accelerated by triaxial stress state. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameters, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on ductile crack initiation behavior. Also, the ductile crack initiation testing were conducted under static and dynamic loading using round bar specimens with circumferential notch and strength mis-matching. The result showed that the nominal strain at ductile crack initiation of circumferential notch specimens small then the round bar specimens for effect of geometrical discontinuity. Also, the nominal strain at ductile crack initiation was decreased with decrease of notch root radius of curvature.

Creep analysis of the FG cylinders: Time-dependent non-axisymmetric behavior

  • Arefi, Mohammad;Nasr, Mehrdad;Loghman, Abbas
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.331-347
    • /
    • 2018
  • In this paper history of stresses, strains, radial and circumferential displacements of a functionally graded thick-walled hollow cylinder due to creep phenomenon is investigated. The cylinder is subjected to an arbitrary non-axisymmetric two dimensional thermo-mechanical loading and uniform magnetic field along axial direction. Using equilibrium, strain-displacements and stress-strain relations, the governing differential equations of the problem containing creep strains are derived in terms of radial and circumferential displacements. Since the displacements are varying with time due to creep phenomenon, an analytical solution is not available for these equations. Thus, a semi-analytical procedure based on separation of variables and Fourier series together with a numerical procedure is employed. The numerical results indicate that the non-axisymmetric loading and the material grading index have significant effect on stress redistributions. Moreover, by proper selection of material for any combination of non-axisymmetric loading, one can arrive suitable response for the cylinder to achieve optimal design. With some simplifications, the results are validated with the existing literature.