• Title/Summary/Keyword: Circulating Fluidized Bed Boiler

Search Result 63, Processing Time 0.028 seconds

Studies on the clinker formed in thermal power plants (화력발전소에서 생성된 크링커에 대한 연구)

  • Park, Hyun-Joo;Nam, Chang-Hyun;Yun, Yeo-Chan;Lee, Tae-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.2
    • /
    • pp.34-40
    • /
    • 2003
  • Analyses for concentration, surface phenomena, and crystal structure were performed to identify the causes of clinker formation in three type of pulverized coal fired boilers. Some clinkers had partially molten surface and more CaO and $Fe_2O_3$ as compared with fly ash, and the major crystalline phases identified in the clinker were mullite and quartz. Clinkers were formed in high temperature zone of the boiler according to the identification of mullite by XRD. Free $SiO_2$ in sand combined with K, Na and Ca in limestone served as a fluxing agent to form clinkers in a circulating bed boiler.

  • PDF

Feasibility Study on the Use of CFBC Ash as Non-sintered Binder (순환유동층 보일러애시를 활용한 비소성 결합재로써의 활용 가능성 검토)

  • Kang, Yong Hak;Lim, Gwi Hwan;Kim, Sang Jun;Choi, Young Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.119-126
    • /
    • 2018
  • Recently, the production of circulating fluidized bed combustion ash has been increased in thermal power plants. The addition of limestone for the desulfurizing effect of circulating fluidized bed boiler ash increases the content of CaO and $SO_3$ contained in ash, which is higher than the free fly ash in general fly ash. Unlike conventional fly ash, the circulating fluidized bed combustion ash has a high reactivity when it comes into contact with water due to its hydraulic properties and high free-CaO content. The aim of this study is to investigate the possibility of non-sintered binder by using self-cementing properties of circulating fluidized bed combustion ash. The mechanical and hydration characteristics were investigated according to the content of CFBC ash. In addition, the effects of gymsum type and content on the compressive strength and micro-structure of non-sintered binder pastes.

Economic Feasibility of Conversion of the Pulverized Coal Firing Boiler using Korean Anthracite into a Circulating Fluidized Bed Boiler (국내탄용 미분탄 보일러의 순환유동층 전환에 따른 경제성 평가)

  • Lee, Jong-Min;Kim, Dong-Won;Kim, Jae-Sung;Kim, Jong-Jin;Kim, Hyeng-Seok
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.489-497
    • /
    • 2006
  • The economical efficiency of conversion of the PC (pulverized coal) firing boiler to the CFB (circulating fluidized bed) boiler which used Koran anthracite as fuel was evaluated. The economic feasibility study was also carried out with regard to maintenance of the existing PC boiler. The sensitivity of economical efficiency with variation of the electric power and coal industry and the policy of government was analyzed and compared. As a results of the evaluation, the economical efficiency of maintenance of the existing PC boiler was higher than that of conversion to the CFB boiler because of the special policy of the government for Korean anthracite. However, the conversion to the CFB boiler was more economically attractive from a point of view of effective use of energy resources and future electric power industry. Additionally, the fund support for electric power industry using Korean anthracite would be effective as changing the policy of the government.

Basic characteristic of non-sintered binder using by CFBC ash (순환유동층 보일러애시를 활용한 비소성 결합재 기초 특성)

  • Kang, Yong-Hak
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.225-226
    • /
    • 2017
  • Recently, there has been a growing interest in the development of non-sintered binder to reduce CO2 emissions from the cement clinker manufacturing process and a number of studies have been conducted on fly ashes as an industrial by-product. However, in order to utilize fly ashes as a non-sintered binder, it is necessary to solve problems such as safety issues and economical efficiency due to use of an alkali activator. This study evaluates the material properties and compressive strength characteristics of three types of circulating fluidized bed boiler ashes. As a result, it was confirmed that the characteristics of each binder vary depending on the location of the power plant and the types of raw materials. In addition, it has been confirmed that the fluidized bed boiler ash shows a high compressive strength and can be used sufficiently as an non-sintered binder.

  • PDF

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash (순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성)

  • Choi, Young-Cheol;Yoo, Sung-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.165-172
    • /
    • 2021
  • The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

The Effect of Borax Solution on the Reduction of Fine Particles in Flue Gas at a Commercial Circulating Fluidized-bed Boiler Firing Bituminous Coal (순환 유동층 보일러에서 석탄 연소 시 Borax Solution이 연소 배가스중 미세먼지 저감에 미치는 영향)

  • Park, Jae Hyeok;Lee, Dong-Ho;Bae, Dal-Hee;Choi, Yu Jin;Ryu, Hwan-Woo;Kim, Ji-Bong;Han, Keun Hee;Shun, Dowon
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.492-500
    • /
    • 2019
  • In this study, the effect of chemical additives on the reduction of fine particles was identified in $9.2MW_e$ commercial scale circulating fluidized bed boiler firing bituminous coal. Futhermore, a simple and effective method of fine particle collection has been developed to collect the fine particles of the boiler during fossil fuel combustion. Chemical additives were used to reduce particles below 10 PM in the flue gas, and borax solution was used as a chemical additive. In order to identify the particle behavior of PM 10 or less among the collected fine particles, it was analyzed through particle size analyzer and SEM analysis. The Borax solution tends to absorb molten mineral in the flue gas and make fine particles grow. As a result, it was analyzed that particles smaller than $10{\mu}m$ were reduced by using borax solution.

Enrichment of Rare Earth Elements Contained in Coal Ashes from Korea Circulating Fluidized Bed Combustion (CFBC) (국내 순환유동층보일러(Circulating fluidized bed combustion) 석탄재의 희토류 농축)

  • Kim, Young-Jin;Choi, Moon-Kwan;Seo, Jun-Hyung;Kim, Byung-Ryeol;Cho, Kye-Hong
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.125-132
    • /
    • 2020
  • Enrichment possibilities for recovering rare earth elements contained in coal bottom ash generated from domestic circulating fluidized bed combustion (CFBC) were identified. The transport characteristics of the REEs according to the separation and removal of major minerals were evaluated using sieving and leaching process. The main minerals of bottom ash were identified as anhydrite, magnetite, and quartz, and this was confirmed as a 30% of REE content of the world's average coal ash REE value (404 ppm) as a result of the difference in the combustion characteristics of power plants (REE contents in starting material: 123 ppm). More than 90% of the REEs contained in the bottom ash were found to move mainly with magnetite, and less than 10% of the components were found to move with the quartz. Therefore, In order to recover rare earth elements from coal bottom ashes generated from CFBC boiler, it is necessary to select the main rare elements such as magnetite and develop a pretreatment and concentration process.

A Study on Characteristics of Fly and Bed Ash in Circulating Fluidized Bed Combustion Boiler According to Particle Size of Limestone (석회석 입도의 변화가 석탄회의 성상에 미치는 영향에 관한 연구)

  • Chung Jin-Do;Kim Jang-Woo;Ha Joon-Ho
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.587-592
    • /
    • 2006
  • The advantage of CFBC(Circulating fluidized bed combustor) is that it can apply to various fuel sources including the lower rank fuel and remove SOx by means of direct supply of limestone to the combustor without additional desulfation facility. In this paper, we denote characteristics of fly and bed ash to reuse finer limestone usually abandoned(used spec[Coarse LS] 0.1mm under 25%, new spec[Fine LS] 0.1mm under 50%). According to the results, the chemical composition of fly ash was as follows; $SiO_2\;40.8%,\;Al_2O_3\;31.9%,\;CaO\;10.7%,\;K_2O\;4.46%$ in the case of coarse limestone and $SiO_2\;41.1%,\;Al_2O_3\;31.3%,\;CaO\;10.9%,\;K_2O\;4.66%$ in the case of fine limestone. The chemical composition of bed ash was as follows; $SiO_2\;54.2%,\;Al_2O_3\;33.1%,\;CaO\;1.56%,\;K_2O\;4.34%$ in the case of coarse limestone and $SiO_2\;53.8%,\;Al_2O_3\;32.6%,\;CaO\;2.21%,\;K_2O\;4.45%$ in the case of fine limestone. It showed that there was no significant change in chemical composition. And it is conformed that there was no significant change in particle size and shapes.

A Review of Desulfurization Technology using Limestone in Circulating Fluidized Bed Boiler Type Power Plant (유동층보일러형 화력발전소의 석회석 활용 탈황기술 연구동향)

  • Baek, Chul-Seoung;Seo, Jun-Hoyung;Ahn, Ji-Whan;Han, Chon;Cho, Kae-Hong
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.3-14
    • /
    • 2015
  • This study investigated that status of domestic and international furnace desulfurization and desulfurization characteristics of limestone for fluidized bed use depending on the technology for CFBC one of the CCPs. Limestone-based desulfurizing agent is one of the superior elements which are optimal at around $850-950^{\circ}C$ on high temperature desulfurization. And effectiveness of desulfurization process can be determined by the desulfurization experiment method such as diffusion reaction of the diaphragm of the absorber surface, the size of the particles, the pores of the quantity, size and structure. And, desulfurization efficiency depending on geological and crystallographic properties and calcination process of limestone needs additional research in the future.

Evaluation of Limestone for In-Situ Desulfurization in CFB Boilers (순환유동층 보일러 로내 탈황을 위한 석회석 평가)

  • Lee, See Hoon;Kim, Dong Won;Lee, Jong Min;Bae, Yong Chae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.853-860
    • /
    • 2019
  • In order to meet more severe environmental regulations, oxy-fuel circulating fluidized bed(CFB) boilers or ultra supercritical CFB boilers, which are a kind of process in that solid particles moves similar to fluid, have been developed in the world. In CFB power generation processes, the method to reduce or remove sulfur dioxide is in-situ desulfurization reaction via limestone directly injected into CFB boilers. However, the desulfurization efficiencies have continuously changed because limestones injected into CFB boilers are affected by various operation conditions (Bed temperature, pressure, solid circulating rate, solid holdup, residence time, and so on). In this study, a prediction method with physical and chemical properties of limestone and operation conditions of CFB boiler for in-situ desulfurization reaction in CFB boilers has developed by integrating desulfurization kinetic equations and hydrodynamics equations for CFB previously published. In particular, the prediction equation for in-situ desulfurization was modified by using experimental results from desulfurization reactions of various domestic limestones.