Browse > Article
http://dx.doi.org/10.7844/kirr.2020.29.6.125

Enrichment of Rare Earth Elements Contained in Coal Ashes from Korea Circulating Fluidized Bed Combustion (CFBC)  

Kim, Young-Jin (Department of Research and Development, Korea Institute of Limestone and Advanced Materials)
Choi, Moon-Kwan (Department of Research and Development, Korea Institute of Limestone and Advanced Materials)
Seo, Jun-Hyung (Department of Research and Development, Korea Institute of Limestone and Advanced Materials)
Kim, Byung-Ryeol (Department of Research and Development, Korea Institute of Limestone and Advanced Materials)
Cho, Kye-Hong (Department of Research and Development, Korea Institute of Limestone and Advanced Materials)
Publication Information
Resources Recycling / v.29, no.6, 2020 , pp. 125-132 More about this Journal
Abstract
Enrichment possibilities for recovering rare earth elements contained in coal bottom ash generated from domestic circulating fluidized bed combustion (CFBC) were identified. The transport characteristics of the REEs according to the separation and removal of major minerals were evaluated using sieving and leaching process. The main minerals of bottom ash were identified as anhydrite, magnetite, and quartz, and this was confirmed as a 30% of REE content of the world's average coal ash REE value (404 ppm) as a result of the difference in the combustion characteristics of power plants (REE contents in starting material: 123 ppm). More than 90% of the REEs contained in the bottom ash were found to move mainly with magnetite, and less than 10% of the components were found to move with the quartz. Therefore, In order to recover rare earth elements from coal bottom ashes generated from CFBC boiler, it is necessary to select the main rare elements such as magnetite and develop a pretreatment and concentration process.
Keywords
Circulating fluidized bed combustion; Coal ash; Rare earth elements; Concentration; Magnetite;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Dai, S., Zhao, L., Hower, J. C., et al., 2014 : Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar power plant, inner Mongolia, China, with emphasis in the distribution of rare earth elements, Energy and Fuel, 28, pp.1502-1514.   DOI
2 Pan, J., Zhou, C., Tang, M., et al., 2019 : Study on the modes occurrence of rare earth elements in coal fly ash by statics and and a sequential chemical extraction procedure, Fuel, 237, pp.555-565.   DOI
3 Kim, Y. D., and Ko, C. S., 2010 : REE resources and it's utilization, Econ. Envron. Geol., 43(5), pp.505-516.
4 Seredin, V. V., and Dai, S., 2012 : Coal deposits as potential alternative sources for lanthanides and yttrium, Int. J. Coal. Geol., 94, pp.67-93.   DOI
5 Kim, Y. J., 2013 : Strategy of critical materials management in the world, J. of Korean Inst. of Resources Recycling, 22(5), pp. 3-12.   DOI
6 Franus, W., Wiatros-Motyka, M. M., and Wdowin, M., 2015 : Coal fly as a resource for rare earth elements, Environ Sci Pollut Res, 22, pp.9464-9474.   DOI
7 Dai, S., Graham, I. T., and Ward, C. R., 2016 : A review of anomalous rare earth elements and yttrium in coal, Int. J. Coal. Geol., 159, pp.82-95.   DOI
8 Zeng, T., Helble, J. J., Bool, L. E., et al., 2009 : Iron transformations during combustion of Pittsburgh no. 8 coal, Fuel, 88, pp.566-572.   DOI
9 Perämäki, S. E., Tiihonen, A. J., and Väisänen, A. O., 2019 : Occurence and recovery potential of rare earth elements in finish peat and biomass combustion fly ash, Journal of geochemical exploration, 201, pp.71-78.   DOI
10 Jang, J. K., Ji, S. W., and Ahn, J. W., 2017 : Utilization of circulating fluidized bed combustion ash and related specifications for mine backfills, J. of Korean Inst. of Resources Recycling, 26(2), pp.71-79.   DOI
11 Moore, F., and Esmaeili, Ali., 2012 : Mineralogy and geochemistry of the coals from the karmodz and kiasar coal mines, International journal of coal geology, 96-97, pp.9-21.   DOI
12 Yang, J., Zhao, Y., Zyryanov, V., et al., 2014 : Physicalchemical characteristics and elements enrichment of magnetospheres from coal fly ashes, Fuel, 135, pp.15-26.   DOI
13 Kolker, A., Scott, C., Hower, J. C., et al., 2017 : Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe, International journal of coal geology, 184, pp.1-10.   DOI
14 Seredin, V. V., 2010 : A new method for primary evaluation of the outlook for rare earth element ores, Geol. Ore Deposits, 52(5), pp.428-433.   DOI
15 Bock, E., 1961 : On the solubility of anhydrous calcium sulphate and of gypsum in concentrated solutions of sodium chloride at 25 ℃, 30 ℃, 40 ℃, and 50 ℃, Can. J. Chem., 39, pp.1746-1751.   DOI
16 Salmimies, R., Mannila M., Kallas, J., et al., 2011 : Acidic dissolution of magnetite: experimental study on the effects of acidic concentration and temperature, Clay and clay minerals, 59, pp.136-146.   DOI
17 Taggart, R. K., Hower, J. C., Dwyer, G. S., et al., 2016 : Trends in the rare earth element content of U.S.-based coal combustion fly ashes, Environ. Sci, Technol, 50, pp.5919- 5926.   DOI
18 Folgueras, M. B., Alonso, M., and Fernandez, F. J., 2017 : Coal and sewage sludge ashes as sources of rare earth elements, Fuel, 192, pp.128-139.   DOI
19 Blissett, R. S., Smalley, N., and Rowson, N. A., 2014 : An investigation into six coal fly ashes from the United Kingdom and poland to evaluate rare element content, Fuel, 119, pp.236-239.   DOI
20 Lin, R., Howard, B. H., Roth, E. A., 2017 : Enrichment of rare earth elements from coal and coal by-products by physical separations, Fuel, 200, pp.506-520.   DOI
21 Park, S. U., Kim, J. K., Seo, Y. S., et al., 2015 : Evaluation of some rare metals and rare earth metals contained in coal ash of coal-fired power plants in Korea, J. of Korean Inst. of Resources Recycling, 24(4), pp.67-75.   DOI
22 Hower, J., Groppo, J., Joshi, P., et al., 2013 : Location of cerium in coal-combustion fly ashes: implications for recovery of lanthanide, Coal combustion and gasfication products, 3, pp.73-78.
23 Zhang, W., Yang, X., Honaker, R. Q., 2018 : Association characteristics study and preliminary recovery investigation of rare earth elements from fire clay seam coal middlings, Fuel, 215, pp.551-560.   DOI
24 Dushyantha, N., Batapola, N., Ilankoon, I. M. S. K., et al., 2020 : The story of rare earth elements(REEs): Occurrences, global distribution, genesis, geology, mineralogy and global production, Ore Geology Reviews, 122, pp. 1-17.
25 Lee, M. S., and Jeon, H. S., 2010 : Extractive metallurgy and separation technology of rare earth ores, J. of Korean Inst. of Resources Recycling, 19(6), pp.27-35.
26 Zhou, B., Li, Z., Chen, C., 2017 : Global potential of rare earth resources and rare earth demand from clean technologies, minerals, 7(11), 203.   DOI
27 Honaker, R. Q., Zhang, W., Werner, J., 2019 : Acid leaching of rare earth elements from coal and coal ash: implications for using fluidized bed combustion to assist in the recovery of critical materials, Energy and Fuel, 33, pp.5971-5980.   DOI