DOI QR코드

DOI QR Code

Characteristics of Carbon Capture by the Accelerated Carbonation Method of Circulating Fluidized Bed Combustion Ash

순환 유동층 보일러 애시의 촉진탄산화에 의한 탄소포집 특성

  • 최영철 (가천대학교 토목환경공학과) ;
  • 유성원 (가천대학교 토목환경공학과)
  • Received : 2021.09.06
  • Accepted : 2021.09.24
  • Published : 2021.10.30

Abstract

The purpose of this study is to investigate the carbon capture capacity of various inorganic materials. For this purpose, the change in property of ordinary Portland cement (OPC), blast furnace slag fine powder (GGBS), and circulating fluidized bed boiler ash (CFBC) due to carbonation were analyzed. Carbonation curing was performed on all specimens through the accelerated carbonation experiment, and the amount of carbon capture was quantitatively analyzed by thermogravimetric analysis according to the age of carbonation. From the results, it is confirmed that the carbon capture capacity was shown in all specimens. The carbon capture amount was shown in the order of CFBC, OPC, and GGBS. The 28-day carbon capture of CFBC, OPC, and GGBS was 3.9%, 1.3%, and 9.4%, respectively. Carbon capture reaction occurred rapidly at the beginning of carbonation, and occurred slowly with increasing age. SEM image analysis revealed that an additional product generated by carbonation curing in all specimens was calcium carbonate.

이 연구는 건설재료로 활용 가능성이 높은 다양한 무기계 재료의 탄소포집에 대한 성능 평가를 목적으로 한다. 이러한 목적을 위해 광물탄산화가 가능한 보통포틀랜드 시멘트(OPC), 고로슬래그 미분말(GGBS), 순환유동층 보일러 애시(CFBC)의 탄산화 반응에 대한 특성 변화를 분석하였다. 촉진 탄산화 실험을 통해 모든 재료에 대한 탄산화 양생을 수행하였으며, 탄산화 재령에 따라 열중량 분석에 의해 탄소포집량을 정량분석하였다. 모든 재료에서 탄소포집 효과가 확인되었고, 실험결과 탄소포집량은 CFBC, OPC, GGBS 순으로 나타났다. CFBC, OPC, GGBS의 28일 탄소포집량은 각각 9.4 wt.%, 3.9 wt.%, wt.1.3 %이다. 탄소포집은 탄산화 초기에 빠르게 발생하였으며, 재령이 증가함에 따라 느리게 발생하였다. SEM 이미지 분석을 통해, 모든 실험체에서 탄산화 양생에 의해 발생된 추가적인 생성물은 탄산칼슘(CaCO3)으로 나타났다.

Keywords

Acknowledgement

본 연구는 국토교통부/국토교통과학기술진흥원의 지원으로 수행되었음(과제번호21CTAP-C163949-01).

References

  1. Chen, K. W., Pan. S. Y., Chen, C. T., Chen, Y. H., and Chiang, P.C. (2016), High-gravity Carbonation of Basic Oxygen Furnace Slag for CO2 Fixation and Utilization in Blended Cement, Journal of Cleaner Production, 124, 350-360. https://doi.org/10.1016/j.jclepro.2016.02.072
  2. Chang, E. E., Chen, T. L., Pan, S. Y., Chen, Y. H., and Chiang, P.C. (2013), Kinetic Modeling on CO2 Capture Using Basic Oxygen Furnace Slag Coupled with Cold-rolling Wastewater in a Rotating Packed Bed, Journal of Hazardous Materials, 260, 937-946. https://doi.org/10.1016/j.jhazmat.2013.06.052
  3. Pan, S. Y., Chiang, P. C., Chen, Y. H., Tan, C. S., and Chang, E. E. (2014), Kinetics of Carbonation Reaction of Basic Oxygen Furnace Slags in a Rotating Packed Bed Using the Surface Coverage Model: Maximization of Carbonation Conversion, Applied Energy, 113, 267-276. https://doi.org/10.1016/j.apenergy.2013.07.035
  4. Anthony E. J, and Granatstein. D. L. (2001), Sulfation Phenomena in Fluidized Bed Combustion Systems, Progress in Energy and Combustion Science, 27(2), 215-236. https://doi.org/10.1016/S0360-1285(00)00021-6
  5. Koornneef, J., Junginger, M., and Faaij, A. (2007), Development of Fluidized bed Combustion-An Overview of Trends, Performance and Cost, Progress in Energy and Combustion Science, 33(1), 19-55. https://doi.org/10.1016/j.pecs.2006.07.001
  6. Sheng, G., Zhai, J., Li, Q., and Li, F. (2007), Utilization of Fly ash Coming from a CFBC Boiler Cofiring Coal and Petroleum Coke in Portland Cement, Fuel, 86(16), 2625-2631. https://doi.org/10.1016/j.fuel.2007.02.018
  7. Xia, Y., Yan, Y., and Hu, Z. (2013), Utilization of Circulating Fluidized Bed Fly ash in Preparing Non-autoclaved Aerated Concrete Production, Construction and Building Materials, 47, 1461-1467. https://doi.org/10.1016/j.conbuildmat.2013.06.033
  8. Anthony, E. J., Berry, E. E., Blondin, J., Bulewicz, E. M., and Burwell, S. (2003), Advanced Ash Management Technologies for CFBC ash, Waste Management, 23, 503-516. https://doi.org/10.1016/S0956-053X(02)00117-4
  9. Anthony, E. J., Jia L., and Wu Y. H. (2005), CFBC ash Hydration Studies, Fuel, 84, 1393-1397. https://doi.org/10.1016/j.fuel.2004.10.017
  10. Kuo, H. P., Tseng, H. Y., Huang, A. N., and Hsu, R. C. (2014), A study of the Ash Production Behavior of Spent Limestone Powders in CFBC, Advanced Powder Technology, 25, 472-475. https://doi.org/10.1016/j.apt.2013.04.014
  11. Armesto, L., and Merino, J. L. (1999), Characterization of Some Coal Combustion Solid Residues, Fuel, 78(5), 613-618. https://doi.org/10.1016/S0016-2361(98)00164-1
  12. Chi, M., and Huang, R. (2014), Effect of Circulating Fluidized Bed Combustion ash on the Properties of Roller Compacted Concrete, Cement and Concrete Composites, 45, 148-156. https://doi.org/10.1016/j.cemconcomp.2013.10.001
  13. Li, X. G., Chen, Q. B., Huang, K. Z., Ma, B. G., and Wu, B. (2012), Cementitious Properties and Hydration Mechanism of Circulating Fluidized Bed Combustion (CFBC) Desulfurization Ashes, Construction Building Materials, 36, 182-187. https://doi.org/10.1016/j.conbuildmat.2012.05.017
  14. Sheng, G., Li, Q., and Zhai, J. (2012), Investigation on the Hydration of CFBC Fly ash, Fuel, 98, 61-66. https://doi.org/10.1016/j.fuel.2012.02.008
  15. Ukwattage, N. L., Ranjith, P. G., Yellishetty, M., Bui H. H., and Xu, T. (2015), A Laboratory-scale Study of the Aqueous Mineral Carbonation of Coal Fly ash for CO2 Sequestration, Journal of Clean Production, 103, 665-674. https://doi.org/10.1016/j.jclepro.2014.03.005
  16. Wang, C., Jia, L., Tan, Y., and Anthony, E. J. (2008), Carbonation of Fly ash in Oxy-fuel CFB Combustion, Fuel, 87(7), 1108-1114. https://doi.org/10.1016/j.fuel.2007.06.024
  17. Soong, Y., Fauth, D. L., Howard, B. H., Jones, J. R., Harrison, D. K., Goodman, A. L., Gray, M. L., and Frommell, E. A. (2006), CO2 Sequestration with Brine Solution and Fly ashes, Energy Conversion and Management, 47(13-14), 1676-1685.
  18. Salvador, C., Lu, D., Anthony, E. J., and Abanades, J. C. (2003), Enhancement of CaO for CO2 Capture in an FBC Environment, Chemical Engineering Journal, 96(1-3), 187-195. https://doi.org/10.1016/j.cej.2003.08.011
  19. Loo, L., Maaten, B., Konist, A., Siirde, A., Neshumayev, D., and Pihu, T. (2017), Carbon Dioxide Emission Factors for Oxy-fuel CFBC and Aqueous Carbonation of the Ca-rich Oil Shale ash, Energy Procedia, 128, 144-149. https://doi.org/10.1016/j.egypro.2017.09.034
  20. Javellana, M. P., and Jawed, I. (1982), Extraction of Free Lime in Portland Cement and Clinker by Ethylene Glycol, Cement and Concrete Research, 12(3), 399-403. https://doi.org/10.1016/0008-8846(82)90088-6
  21. Salman, M., Cizer, O., Pontikes, Y., Santos, R. M., Snellings, R., Vandewalle, L., Blanpain, B., and Balen, K. V. (2014), Effect of Accelerated Carbonation on AOD Stainless Steel Slag for its Valorisation as a CO -sequestering Construction Material, Chemical Engineering Journal, 246, 39-52. https://doi.org/10.1016/j.cej.2014.02.051
  22. Goto, S., Ioku, K., and Nakamura, A. (1998), Hardening of Calcium Silicate Compounds by Carbonation, Inorganic Materials, 5, 22-27. https://doi.org/10.1134/S2075113314010092
  23. Anthony, E. J., Bulewica, E. M., Dudek, K., and Kozak, A. (2002), The Long Term Behaviour of CFBC Ash-water Systems, Waste Management, 22(1), 99-111. https://doi.org/10.1016/S0956-053X(01)00059-9
  24. Iribarne, J., Iribarne, A., Blondin, J., and Anthony, E. J. (2001), Hydration of Combustion Ashes - a Chemical and Physical Study, Fuel, 80(6), 773-784. https://doi.org/10.1016/S0016-2361(00)00158-7
  25. Havlica, J., Odler, I., Brandstetr, J., Mikulikova, R., and Walther, D. (2004), Cementitious Materials Based on Fluidised Bed Coal Combustion Ashes, Advances in Cement Research, 16(2), 61-67. https://doi.org/10.1680/adcr.16.2.61.36252
  26. Goto, S., Suenaga, K., Kado, T., and Fukuhara, M. (1995), Calcium Silicate Carbonation Products, Journal of the America Ceramic Society, 78(11), 2867-2872. https://doi.org/10.1111/j.1151-2916.1995.tb09057.x