• Title/Summary/Keyword: Circular Plate

Search Result 644, Processing Time 0.034 seconds

The Stiffness Analysis of Circular Plate Regarding the Area Change of Both Ends Constructing Supporting Conditions (원형평판의 지지조건을 구성하는 양 끝단의 면적변화에 따른 강성도 해석)

  • 한근조;안찬우;김태형;안성찬;심재준;한동섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.908-911
    • /
    • 2002
  • This paper investigates the characteristics of deflection for circular plate that has same supporting condition along the width direction of plate according to the area change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting part to radius of circular plate.

  • PDF

The Stiffness Analysis of Circular Plate Regarding the Length of Supporting End Using Elastic Beam Theory (탄성보 이론을 적용한 원형평판의 지지단길이 변화에 따른 강성도 해석)

  • 한동섭;한근조;심재준;김태형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.109-116
    • /
    • 2004
  • This paper investigates the characteristics of deflection for circular plate that has same supporting boundary condition along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supporting and clamping on both ends, this study derives maximum deflection formula of circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with different widths along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

Free Vibration Analysis of a Circular Plate with an Eccentric Circular Hole by the Independent Coordinate Coupling Method (독립좌표연성법을 이용한 편심 된 원형 구멍을 갖는 원판의 자유진동해석)

  • Heo, Seok;Kwak, Moon-K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.6
    • /
    • pp.681-689
    • /
    • 2008
  • This paper is concerned with the free vibration analysis of a circular plate with an eccentric circular hole by the Independent coordinate coupling method(ICCM). It was proved in the previous study that the ICCM can accurately predict the natural frequencies and mode shapes of the annular plates and can also be used for the free vibration analysis of the simply-supported circular plate with an eccentric circular hole. In this study, the clamped and free boundary conditions were considered for the circular plate. The numerical results show that the ICCM can be used effectively for the free vibration problem of circular plate with an eccentric hole compared to the finite element method.

A Study on the Deflection of the Circular Plate with a Linear Change of Thickness using the Elastic Beam Theory (보이론을 적용한 선형적 두께변화를 갖는 원형평판의 처짐에 관한 연구)

  • Han D.S.;Han G.J.;Kim T.H.;Shim J.J.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1695-1698
    • /
    • 2005
  • In this paper we investigate characteristics of deflection for circular plate with the non-symmetric boundary condition that is the boundary condition partly supported along the width direction of plate according to the length change of supporting end. For two boundary conditions such as simple supported and completely clamped boundary conditions, this study derives the maximum deflection formula of the circular plate using differential equation of elastic curve, assuming that a circular plate is a beam with the change of width and thickness along the longitudinal direction. The deflection formula of circular plate is verified by carrying out finite element analysis with regard to the ratio of length of supporting end to radius of circular plate.

  • PDF

FREE VIBRATION ANALYSIS OF CIRCULAR PLATE WITH ECCENTRIC HOLE SUBMERGED IN FLUID

  • Jhung, Myung-Jo;Choi, Young-Hwan;Ryu, Yong-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.355-364
    • /
    • 2009
  • Circular plates with holes are extensively used in mechanical components. The existence of a hole in a circular plate results in a significant change in the natural frequencies and mode shapes of the structure. Especially if the hole is located eccentrically, the vibration behavior of these structures is expected to deviate significantly from that of a plate with a concentric hole. In addition, if the plate is in contact with or submerged in fluid, the situation is more complex. Therefore, in this study, an analytical method to determine the modal characteristics of a plate submerged in fluid is developed based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method and is verified by the finite element analysis using a commercial program. Also, the relationship between parameter variations and vibration modes is investigated. These results can be used as guidance for the modal analysis and damage detection of a circular plate with a hole.

Free In-plane Vibration of a Clamped Circular Plate (고정된 원형 플레이트의 평면내 자유진동)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.836-839
    • /
    • 2005
  • The in-plane vibration response of a clamped circular plate should be predicted in many applications. Up to now, papers on the in-plane vibration of rectangular plate are published. However, analytical derivation on the in-plane vibration of the clamped circular plate is not carried out. Therefore, the in-plane vibration of the clamped circular plate is the concern of this paper. In order to derive the equations of motion for the clamped circular plate in the cylindrical coordinate, the kinetic energy and potential energy for the in-plane behavior are obtained by us ing the stress-strain-displacement expressions. Application of Hamilton's principle leads to two sets of differential equations. These displacement equations were highly coupled. It is possible to obtain a simpler set of equations by introducing Helmholtz decomposition. Substituting them into the coupled differential equations, we obtain the uncoupled equations of motion. In order to solve them, we assume that the solutions are harmonic. Then, they lead to the wave equations. Using the separation of variable, we obtain the general solutions for the equations. Based on the solutions, the displacements for r and $\theta$ direction are assumed. Finally we obtain the frequency equation for the clamped circular plate by the application of boundary conditions. The derived equation is compared with the finite element analysis for validation by using the some numerical examples.

  • PDF

Free Vibration Analysis of Simply-Supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1177-1182
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have be en many methods developed for the free vibration of the rectangular plate with a rectangular cutout., very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian co ordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

  • PDF

Free Vibration Analysis of Simply-supported Rectangular Plate with a Circular Cutout by Independent Coordinate Coupling Method (독립좌표연성법을 이용한 원형 구멍을 갖는 단순지지 직사각형 평판의 자유진동해석)

  • Kwak, Moon-K.;Han, Sang-Bo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.643-650
    • /
    • 2006
  • This paper is concerned with the vibration analysis of a simply-supported rectangular plate with a circular cutout. Even though there have been many methods developed for the free vibration of the rectangular plate with a rectangular cutout, very few research has been carried out for the rectangular plate with a circular cutout. In this paper, a new methodology called independent coordinate coupling method, which was developed to save the computational effort for the free vibration analysis of rectangular plate with a rectangular cutout, is applied to the case of circular cutout. The independent coordinate coupling method employs the global coordinate system for the plate and the local coordinate system for the cutout. In the case of the rectangular plate with a circular cutout, the global coordinate system is the Cartesian coordinate system and the local coordinate system is the polar coordinate system. By imposing the compatibility condition, the relationship between the global coordinates and the local coordinates is derived. This equation is then used for the calculation of the mass and stiffness matrices resulting in eigenvalue problem. The numerical results show the efficacy of the proposed method.

In-plane Natural Vibration Analysis of a Circular Plate by Using finite Element Method (유한요소법을 이용한 원형 평판의 면내 고유진동 해석)

  • Kim, Chang-Boo;Kwak, Dong-Hee
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1083-1087
    • /
    • 2009
  • We present an 1-dimensional annular disk element with which natural vibration of a circular plate can be analyzed accurately and facilely. The natural vibration characteristics of a circular plate with free outer boundary are analyzed by using the presented I-dimensional element. Its results are compared with the results obtained by utilizing 2-dimensional 8-node quadrilateral plane element and cyclic symmetry of the circular plate. And also, by comparing with the theoretical results of previous researchers, the accuracy and facility of the presented I-dimensional element are verified.

  • PDF

The Study of Heat Transfer on a Isothermal Circular Surface by an Impinging, Circular Water Jets with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐제트 충돌에 의한 일정 두께 하향 등온원형평판에서의 열전달 현상)

  • Eom, Yongkyoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2014
  • The heat transfer phenomenon was investigated in this study when a single round water jet with the low velocity and against the direction of gravity flows to the downward facing Isothermal of definite thickness circular plate. Experimental investigation is performed for a single round jet diameter 4mm, 6mm, and 8mm with the jet velocity 2.4m/s and jet fluid temperature of $24^{\circ}C$, varied the ratio of nozzle clearance/nozzle diameter (H/D)1, 2, 3, 6, and 8, on circular plate isothermal condition with $85^{\circ}C$. The local convection heat transfer coefficient distributions are analyzed based on the visualization of jet flow field. The effects of the diameter of Nozzle, the ratio of H/D and the ratio of nozzle diameter/circular plate diameter on heat transfer phenomenon are investigated. As a results of experiment is obtained correlation equation, $Nu_r=3.18Re_r^{0.55}Pr_r^{0.4}$.