• Title/Summary/Keyword: Circular Error Probable

Search Result 9, Processing Time 0.032 seconds

A Study on Analysis of Emitter Geolocation Coverage Area based on the Characteristics and Deployment of Sensors (센서 특성 및 배치를 고려한 에미터 위치탐지 영역 분석에 관한 연구)

  • Yang, Jong-Won;Park, Cheol-Sun;Jang, Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.99-108
    • /
    • 2006
  • In this paper, we analyzed the characteristics of emitter geolocation coverage area within which the emitter lies with a specified probability based on the LOBs(Line of Bearing) of sensors. Stansfield and MSD algorithms were applied to calculate BPE(Best Point Estimate), EEP(Elliptical Error Probable) and CEP(Circular Error Probable), They used the weighting factors composed of ${\sigma}_{Phi}$ (bearing error), QF(quality factor), $P_{e}$ (probability being inside) to optimize the performance. The characteristics of EEP was investigated in the change of them and those of CEP was analyzed based on the deployment of sensors.

A Study on the T&E Method for the Aircraft focused on Weapon Accuracy (항공 무장정확도 시험평가 방법에 관한 연구)

  • Hyun, Jun-Ho;Kang, Sung-Jin
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.1
    • /
    • pp.117-133
    • /
    • 2007
  • The weapon accuracy is a basic measure of performance in the area of weapon system acquisition. It requires the establishment of correct concept and the T&E methods. Existing T&E method for aircraft weapon systems have not considered types of exact hitting area for various weapons. This study intends to suggest an optimal T&E methods in Korean T&E environment. In order to sampling and to test aircraft weapon accuracy, we need probability and statistic theories. There are many types of CEP(Circular Error Probable) methods. We recommend 2 types of CEP methods which are Lockheed Martin CEP method and Johnson CEP method. Also, suggest some other T&E methods. These methods can be used to accuracy test in the area of weapon system acquisition in the future.

A Study on the Map Accuracy Assessment of Positioning Data Using Statistical Approach Analysis (오차분석을 이용한 지도 위치정확도 평가기법에 관한 연구)

  • Cho, Bong-Whan;Lee, Yong-Woong;Choi, Sun-Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.1 s.9
    • /
    • pp.71-80
    • /
    • 1997
  • This paper suggests a Map Accuracy Standards by analyzing U.S. National Map Accuracy Standards, by considering korean terrain feature and statistical error theory for paper and digital maps on the scale of 1:50,000. Map accuracy standards require horizontal accuracy to be reported as a circular error with 90% confidence level through Linear Error Probable(LEP) theory and Circular Error Probable(CEP) theory. In order to verify the proposed methodology for positioning accuracy testing, several kinds of test point were selected and tested. These test points were extracted at the centers of roads and bridges, the comers of the independent building, the edges of geographical botany, and the tops of mountains. The positioning accuracy assessment was peformed by comparing the positions of test points in digital maps generated three different sources with those acquired by high accurate GPS surveying. The digital maps were produced from aerial photographs and SPOT satellite image using analytical plotter and 1:50,000 paper map.

  • PDF

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

Prediction of Heave Natural Frequency for Floating Bodies (부유체의 상하동요 고유진동수 예측)

  • Kim, Ki-Bum;Lee, Seung-Joon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.329-334
    • /
    • 2017
  • As the motion response of heave for floating bodies on the water surface is relatively large near the natural frequency, it is necessary to predict its value accurately from the stage of initial design. Bodies accelerating in fluid experience force acted upon by the fluid, and this force is quantified by using the concept of added mass. For predicting the natural frequency of heave we need to know the added mass, which is given as a function of frequency, and hence the natural frequency can be obtained through only by iteration process, as was pointed out by Lee (2008). His method was applied to circular cylinders, and two dimensional cylinders of Lewis form by making use of the Ursell-Tasai method in the previous works, Lee and Lee (2013), Kim and Lee (2013), and Song and Lee (2015). In this work, a similar algorithm employing the concept of strip method is adopted for predicting the heave natural frequency of KCS(KRISO Container Ship), and the obtained computational result was compared with other existing experimental data, and the agreement seems reasonable. Furthermore, through the error analysis, it is shown that why the frequency corresponding to the local minimum of the added mass and the natural frequency are very close. And it seems probable that we can predict the heave natural frequency if we know only the local minimum of added mass and the corresponding frequency under a condition, which holds for ship-like bodies in general.

Analysis of Two Moving Platform Passive Emitter Location with Continuously Measurable Parameters (2개의 이동하는 수신기를 이용한 측정 정보별 고정 신호원의 위치 추정 성능 분석)

  • Park, Jin-Oh;Lee, Moon Seok;Park, Young-Mi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.157-164
    • /
    • 2014
  • The accuracy of instantaneous passive emitter localization varies with sensing platforms and measurable parameters. Appropriate combination of instantaneous measurable parameters have more accurate localization performance than a single parameter based localization in general. Emitter localization is preferred to use a small number of receivers as possible for the efficiency of strategic management in the field of modern electronic warfare support. For this reason, we compare CRLB (Cramer-Rao lower bound) of two moving platform with various measurable parameters to search a appropriate choice of parameters for the better localization performance through the x-y axis CEP (circular error probable) derived form CLRB. In addition, we present the relation of the localization performance and accuracy of measurable parameters.

A Study on Simple Methodology of Distruction Effects Analysis 3 Dimensional Building Target's by Weapon Systems (무기체계 3차원 건물표적에 대한 간이 파괴효과분석 방법론 연구)

  • Park, Jinho;Choi, Sangyeong;Kim, Yeongho
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.3
    • /
    • pp.89-96
    • /
    • 2015
  • In order to use missiles more effectively, assessing methodologies was advanced about weapon effects for various target types. We tried to find out the most effective analysis methodologies for missiles to attack 3 dimensional building target's and analyzed adaptedness as an assessing methodology. There are EFD (Expected Fractional Damage) and SSPD (Single Sortie Probability of Damage) methodologies to assess building target damage. In order to calculate effectiveness we used input parameter such as size of the target and CEP (Circular Error Probable), MAE_bldg (Mean Area of Effects for Building) of weapons and impact angle as encountering condition between the target and the missile. We compared EFD and SSPD, in order to analyze adaptedness as a effective methodology by CEP and MAE. The result was that EFD methodology was more adaptive to assess 3 dimensional building targets by missile systems than SSPD.

A Study on Generating Meta-Model to Calculate Weapon Effectiveness Index for a Direct Fire Weapon System (직사화기 무기체계의 무기효과지수 계산을 위한 메타모델 생성방법 연구)

  • Rhie, Ye Lim;Lee, Sangjin;Oh, Hyun-Shik
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.23-31
    • /
    • 2021
  • Defense M&S(Modeling & Simulation) requires weapon effectiveness index which indicates Ph(Probability of hit) and Pk(Probability of kill) values on various impact and environmental conditions. The index is usually produced by JMEM(Joint Munition Effectiveness Manual) development process, which calculates Pk based on the impact condition and circular error probable. This approach requires experts to manually adjust the index to consider the environmental factors such as terrain, atmosphere, and obstacles. To reduce expert's involvement, this paper proposes a meta-model based method to produce weapon effectiveness index. The method considers the effects of environmental factors during calculating a munition's trajectory by utilizing high-resolution weapon system models. Based on the result of Monte-Carlo simulation, logistic regression model and Gaussian Process Regression(GPR) model is respectively developed to predict Ph and Pk values of unobserved conditions. The suggested method will help M&S users to produce weapon effectiveness index more efficiently.

Gauss-Newton Based Estimation for Moving Emitter Location Using TDOA/FDOA Measurements and Its Analysis (TDOA/FDOA 정보를 이용한 Gauss-Newton 기법 기반의 이동 신호원 위치 및 속도 추정 방법과 성능 분석)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.62-71
    • /
    • 2013
  • The passive emitter location method using TDOA and FDOA measurements has higher accuracy comparing to the single TDOA or FDOA based method. Moreover, it is able to estimate the velocity vector of a moving platform. Recently, several non-iterative methods were suggested using the nuisance parameter but the common reference sensor is needed for each pair of sensors. They show also relatively low performance in the case of a long range between the sensor groups and the emitter. To solve this, we derive the estimation method of the position and velocity of a moving platform based on the Gauss-Newton method. In addition, to analyze the estimation performance of the position and velocity, respectively, we decompose the CRLB matrix into each subspace. Simulation results show the estimation performance of the derived method and the CEP planes according to the given geometry of the sensors.