• Title/Summary/Keyword: Circular Cylindrical Shell

Search Result 75, Processing Time 0.023 seconds

Stress analysis for the orthotropic cylindrical shells subjected to line load based on Novozhilov's shell theory (선하중을 받는 직교이방성 원통셀의 Novozhilov셀 이론에 의한 응력해석)

  • 이영신;최병두
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.789-799
    • /
    • 1987
  • The stress state and displacement for the orthotropic cylindrical shell subjected to line load along a generator is presented. It is assumed that the behavior of the material is specially-orthotropic. The governing equation for orthotropic cylindrical shell is derived on the basis of Novozhilov's shell theory. General solution is obtained by extending the Naghdi's method for the isotropic cylindrical shell under the line load. Numerical examples are presented for circular cylindrical shells having various othotropic material properties and geometries.

Buckling of Composite Cylindrical Shells Sugjected ot Torsion of Lateral Pressure (비틀림 및 횡압럭을 받고 있는 복합재 원통쉘의 좌굴)

  • Han, Byeong-Gi;Lee, Seong-Hui;Yu, Taek-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1436-1444
    • /
    • 1996
  • The problem ofinstability of laminated circular cylindrical shell under the action of torsio or lateral pressure is investigated. The analysis is based on the Sander's theory for finite deformations of thin shell. The buckling is elastic for thin compoisite shell nad the geometry is assumed to be free of initial imperfections. The equilibrium equations are obrained by usitn the p[erturbation technique. Solution procedure is based on the Galerkin mehtod. The computer program for numerical results is made for several stacking sequence, length-to-radius ratio, and radius-to-thickness ratio. The numerical results of buckling load are present.

The Effect of Liquid Level on the Natural Frequencies of a Partially Liquid-Filled Circular Cylindrical Shell (유체로 채워진 원통형 쉘의 고유진동수에미치는 수위의 영향)

  • 정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.314-319
    • /
    • 1995
  • The effect of liquid level on the natural frequencies and mode shapes of a partially liquid-filled circular cylindrical shell with various boundary conditions is investigated by means of a theoretical analysis based upon Fourier series expansion method and a finite element analysis using ANSYS computer program. Two dimensional mode shapes of the liquid-coupled shell structure are obtained by the ANSYS finite element analysis and show that the liquid level affect the nodal point movement. It is found that the variation of normalized naturalfrequencies (natural frequencies of liquid-filled shell/antural frequencies ofempty shell) to the liquid level is depend on the axial mode numbers and circumferential wave numbers. Additionally, it is found that the number of variational steps of normalized natural frequencies is identicial to that of axial nodal points of the mode shape.

  • PDF

Bending Buckling Analysis of Circular Cylindrical Shell based on LOVE Type Solution (LOVE이론에 근거한 원통형쉘의 휨좌굴해석)

  • 김성도;하지명;이시형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.53-60
    • /
    • 1999
  • The bending buckling behavior of circular cylindrical shell is studied. The classical analysis by Love type solution and the package program LUSAS for the structural analysis are used to estimate the critical stresses of circular cylindrical shells under axial compression and bending loads. In this paper, the Love type of buckling equation is carefully investigated and numerical results are presented for a wide range of radius-to-thickness (R/t) ratios and length-to-radius (L/R) ratios. These results show that the maximum critical bending stress is about 30~80% greater than the critical compressive stress

  • PDF

Buckling of the multi-vaulted "Aster" shell under axial compression alone or combined with an external pressure

  • Araar, M.;Derbali, M.;Jullien, J.F.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.7
    • /
    • pp.827-839
    • /
    • 1998
  • This paper presents a study of buckling of the multi-vaulted cylindrical shell ("Aster"), under an axial compression alone or combined with an external pressure. This shell which was presented in a recent paper is a self-stiffened structure having a satisfactory behaviour and a higher buckling strength under external pressure than a circular cylindrical shell with the same dimensions. The results of this study emphasize the interest of the behaviour of the "Aster" shell under two other types of loading, revealing an acceptable level of strength which is favorable for an expansion of its use in other areas.

Free Vibration Analysis of a Circular Cylindrical Shell with a Spherical Cap (구형 캡이 결합된 외팔 원통 쉘의 고유진동 해석)

  • J.S. Yim;D.S. Sohn
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.355.2-355
    • /
    • 2002
  • The receptance method was applied for the analysis of a cylindrical shell with a spherical cap attached at an arbitrary axial position of the shell. The boundary condition of the shell considered here was clamped-free condition. Before the analysis of the shell/spherical cap combined structure, natural frequencies of the cap and the shell were calculated separately and then they were used in the calculation of the frequencies of the combined structure by the receptance method. (omitted)

  • PDF

Elastic-Plastic Finite Element Analysis of Deep Drawings of Circular and Square Cups Considering Bending (굽힘을 고려한 원형 및 정사각형컵 딥드로잉 공정의 탄소성 유한요소해석)

  • 심현보;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1738-1750
    • /
    • 1994
  • Both cylindrical cup drawing and square cup drawing are analyzed using membrane analysis as well as shell analysis by the elastic-plastic finite element method. An incremental formulation incorporating the effect of large deformation and normal anisotropy is used for the analysis of elastic-plastic non-steady deformation. The computed results are compared with the existing experimental results to show the validity of the analysis. Comparisons are made in the punch load and distribution of thickness strain between the membrane analysis and the shell analysis for both cylindrical and square cup drawing processes. In punch load, both analyses show very little difference and also show generally good agreement with the experiment. For the cylindrical cup deep drawing, the computed thickness strain of a membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agrement with the experiment. For the square cup deep drawing, both membrane and shell analyses show a wide difference with experiment, this may be attributable to the ignorance of the shear deformation. Concludingly, it has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact information on the thickness strain distribution is required.

Fourier Series Expansion Method for Free Vibration Analysis of a Partially Liquid-Filled Circular Cylindrical Shell (Fourier 급수전걔를 이용한 부분적으로 유체가 채워진 원통형 셸의 고유진동 해석)

  • 정경훈;이성철
    • Journal of KSNVE
    • /
    • v.4 no.2
    • /
    • pp.163-175
    • /
    • 1994
  • An analytical method for nautral frequencies of a partially liquid- filled circular cylindrical shell with various boundary conditions is developed by means of the Stokes's transformation and Fourier series expansion on the basis of Sanders' shell equation. The liquid-shell coupled system is divided into two regions for convenient formulation. One is the empty shell region in which the Sanders' shell equations are formulated without the lipuid effect, the other is wetted shell region in which the shell equations are formulated with consideration of the liquid dynamic effect. The shell equations for each regions are combined by the geometry and the force continuities at the junction of the two regions. For the vibration relevant to the liquid motion, the velocity potential of liquid is assumed as a sum of linear combination of suitable harmonic functions in axial direction. The unknown parameters are selected to satisfy the boundary condition along the wetted shell surface. The natural frequencies of the liquid filled cylindraical shells with the clamped- free and the clamped-clamped boundary conditions examined in the previous works, are obtained by this analytical method. The results are compared with the previous works, and excllent agreement is found for the natural frequencies of the shells.

  • PDF

Stress Analysis on Composite Cylindrical Shells with a Reinforced Cutout Subjected to Axial Load (보강 개구부가 있는 복합재료 원통셸의 축방향 하중에 따른 응력해석)

  • 이영신;류충현;김영완
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.211-214
    • /
    • 1999
  • The stress distribution around the cutout of composite cylindrical shells with a circular or elliptical reinforced cutout subjected to axial compression or tension is studied by asymptotic method. Analytical solutions used a Donnell type orthotropic shell theory are presented by the defined stress concentration factor and are compared to experimental results. The experiment used the universal testing machine (UTM), strain gage and fixtures designed/manufactured for axial tension test of a cylindrical shell is carried and the composite material used in the experiment is plain weave glass fiber reinforced plastic (GFRP).

  • PDF

Analysis of a cantilever cylindrical shell by an approximate thory (근사이론에 의한 Cantilever원통쉘의 해석)

  • ;;Lee, Young Shine
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.183-192
    • /
    • 1981
  • The present study gives an apprximate equation of circular cylindrical shell on the basis of Flugges's exact theory. The longitudinal bending moment .MU.$\_$x/ and circumferential strain .epsilon.$\_$.theta. are assumed to be small to be small and have been neglected. The governing equation of the cylindrical shell, which is generaly presented as 8th order partial differential equation, is reduced into a 4th order partial differential equation for axial coordinate. To verify the validity and accuracy of this approximate theory, the cantilever cylindrical shell subjected to a concentrated load is analyzed. The maximum errors of longitudinal stress and deflection are about 10 percent compared with the analysis by flugge's theory and are about 15 percent with experimental results.