• Title/Summary/Keyword: Circular Arc Method

Search Result 74, Processing Time 0.023 seconds

A simple approach for circular Arc detection using a least squares fitting and preprocessing (최소자승법과 전 처리를 이용한 원호 검출의 간단한 접근)

  • Nkurunziza, Armel;Kim, Jong-nam
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.840-843
    • /
    • 2016
  • The circular arc is a very useful feature for object detection and recognition in industrial environments. In this paper, a new method to detect circular arcs is proposed. The detection of the circular arc includes the estimation of the center, the radius and the two ending points of the arc. This new method is based on determining the best part of the circular arc (part which does not contains outliers points) using 3 points designated along the arc. A least square method is applied to the best part of the arc and the center and the radius of the arc are obtained. The distance between the remaining edge's points (points which are not lying on the best part of the arc) and the radius is used to the two ending points of the arc.

  • PDF

Real-time Line Interpolation of a 2.3D Circular Arc based on the Acceleration and Deceleration of a Servo Motor (서보 모터의 가감속을 고려한 2.3차원 원호의 실시간 직선 보간)

  • Lee, Je-Phill;Lee, Cheol-Soo
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.399-404
    • /
    • 2001
  • In CNC machining, a 3D(3-dimension) linear segment and a 2D(2-dimension) circular arc are general forms given by CAD/CAM system. Generally, the 2D circular arc machining is processed using dividing into some linear segments. A 3D circular arc also don't exist in the standard form of NC data. This paper present a algorithm and method for real-time machining of a circular arc(not only the 2D one, but also the 3D one). The 3D circular arc machining is based on the 2D circular arc machining. It only needs making a new coordinate system, converting given 3D points(a start point, a end point, and a center point of a 3D circular arc) into points of the new coordinate system, and processing a inverse transformation about a interpolated point. The proposed algorithm was implemented and simulated on PC system. It was confirmed to give a gcod result.

  • PDF

Analysis of Stress Intensity Factors for Circular arc Cracks by Boundary Element Method (경계요소법에 의한 아크균열의 응력확대계수 해석)

  • 백열선;이장규;우창기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.28-36
    • /
    • 1999
  • In this paper, A circular arc crackered plate in biaxially stretched sheets was investigated in the boundary element method. The applications of fracture mechanics have traditionally concentrated on crack problems under an mode I, straight crack. However, many service failures occur from growth of cracks subjected to mixed mode loadings. A rectangular plate with arc crack or slanted central crack, under biaxial tensile loading, was treated analytically and also solved numerically. The Results from BEM applying different loading conditions, crack length (a/W), arc angle($\alpha$) are presented and discussed. The stress intensity factors are evaluated by the techniques of the J-integral. The decomposition method, used to decouple the stress intensity factors in mixed mode problems, is implemented by a considering a small circular contour path around each crack tip. The BIE method was successfully applied to a circular arc crackerd plate problem, also slanted centre cracked plate under mixed mode.

  • PDF

A Design Method for Cascades Consisting of Circular Arc Blades with Constant Thickness

  • Bian, Tao;Han, Qianpeng;Bohle, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.1
    • /
    • pp.63-75
    • /
    • 2017
  • Many axial fans have circular arc blades with constant thickness. It is still a challenging task to calculate their performance, i.e. to predict how large their pressure rise and pressure losses are. For this task a need for cascade data exists. Therefore, the designer needs a method which works quickly for design purposes. In the present contribution a design method for such cascades consisting of circular arc blades with constant thickness is described. It is based on a singularity method which is combined with a CFD-data-based flow loss model. The flow loss model uses CFD-data to predict the total pressure losses. An interpolation method for the CFD-data are applied and described in detail. Data of measurements are used to validate the CFD-data and parameter variations are conducted. The parameter variations include the variation of the camber angle, pitch chord ratio and the Reynolds number. Additionally, flow patterns of two dimensional cascades consisting of circular arc blades with constant thickness are shown.

A Stress Analysis on the Involute-Circular Arc Composite Tooth Profile Gear (인벌류우트-圓弧 合成齒形기어의 應力解析)

  • 탁계래;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.198-204
    • /
    • 1987
  • In a new involute-circular arc tooth profile which is composed of an involute curve in the vicinity of pitch point, a circular arc in the addendum part, and a curve in the dedendum part which is generated by the circular arc profile of mating gear tooth profile, the tooth contact stress is calculated analytically and the root fillet stress is calculated by the finite element analysis. The root fillet stress and the Hertzian contact stress of composite tooth profile gear are decreased with increasing the pressure angle and with decreasing the radius of circular arc and unwound angle. Compared with the standard involute gear, the root fillet stress is decreased by 2-15% and the Hertizian contact stress is decreased by 6-24%.

Detection of Circular Arcs within Tolerant Error (허용 오차를 만족하는 호의 추출)

  • Lyu Sung-Pil
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.9
    • /
    • pp.868-877
    • /
    • 2005
  • Arcs are usually treated as significant features in the field of pattern recognition. This paper presents a method to detect arcs from digital planar curves and estimate their arc centers and radii by using geometric analysis. The deviation of distance between the original curve and the detected arc by the proposed method does not exceed a tolerant error. The experimental results show that the proposed method is available for the detection of arcs iron not only smooth but also heavily noisy curves.

Mechanical characteristics of involute-circular arc composite tooth profile (인벌류우트-圓弧 合成齒形의 諸特性)

  • 변준형;최상훈;윤갑영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.870-875
    • /
    • 1986
  • In this study, full-rounded tip curve of rack and its mating fillet curve of pinion in Involute-circular arc composite tooth profile are derived. Mechanical characteristics are calculated analytically, i.e., Specific sliding, Nominal bending stress at working root circle and the Contact factor of the arc of contact in circular arc part to the arc of double contact. These characteristics compared with standard involute tooth profile are improved in circular arc part of composite tooth profile. To obtain more efficient composite tooth profile, we studied these characteristics with regard to the changes of unwound angle and radius of circualr arc. And a design method of composite tooth profile is suggested. Composite tooth profile are compared with standard involute tooth profile.

Finite element generalized tooth contact analysis of double circular arc helical gears

  • Qu, Wentao;Peng, Xiongqi;Zhao, Ning;Guo, Hui
    • Structural Engineering and Mechanics
    • /
    • v.43 no.4
    • /
    • pp.439-448
    • /
    • 2012
  • This paper investigates the load sharing of double circular arc helical gears considering the influence of assembly errors. Based on a load sharing formulae, a three-dimensional finite element tooth contact analysis (TCA) is implemented with commercial software package ANSYS. The finite element grid for the double circular arc gear contact model is automatically generated by using the APDL (ANSYS Parameter Design Language) embedded in ANSYS. The realistic rotation of gears is achieved by using a coupling degree-of-freedom method. Numerical simulations are carried out to exemplify the proposed approach. The distribution of contact stress and bending stress under specific loading conditions are computed and compared with those obtained from Hertz contact theory and empirical formulae to demonstrate the efficiency of the proposed load sharing calculation formulae and TCA approach.

APPROXIMATION ORDER OF C3 QUARTIC B-SPLINE APPROXIMATION OF CIRCULAR ARC

  • BAE, SUNG CHUL;AHN, YOUNG JOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.2
    • /
    • pp.151-161
    • /
    • 2016
  • In this paper, we present a $C^3$ quartic B-spline approximation of circular arcs. The Hausdorff distance between the $C^3$ quartic B-spline curve and the circular arc is obtained in closed form. Using this error analysis, we show that the approximation order of our approximation method is six. For a given circular arc and error tolerance we find the $C^3$ quartic B-spline curve having the minimum number of control points within the tolerance. The algorithm yielding the $C^3$ quartic B-spline approximation of a circular arc is also presented.

A Study on circular Arc Approach for Motion Analysis of Oscillating Roller Follower and Disk Cam Mechanisms (요동운동 롤러 종동절과 디스크 캠 기구의 운동해석을 위한 원호 접근법에 관한 연구)

  • 구병국;신중호;윤호업;장옥화
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.523-526
    • /
    • 2000
  • This paper performs the motion analysis for a disk cam and a follower mechanism using a circular arc method, a coordinate transformation method and an instant velocity method in order to find a contact point between the cam and the follower. Based on the proposed method, the displacement and the velocity are calculated by using the geometric relationships of the cam mechanism. Also, the acceleration is determined on using the central difference method. As the results, this paper presents the original curve and the analyzed curve for the motion analysis of the disk cam for an example.

  • PDF