• Title/Summary/Keyword: Circuits modeling

Search Result 175, Processing Time 0.022 seconds

A Study on Library Development of the Power Electronics Circuits Analysis using a PSPICE and MATLAB (PSPICE와 MATLAB을 이용한 전력전자회로 해석의 라이브러리 개발에 관한 연구)

  • Na, Seung-Kwon;Ku, Gi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4975-4983
    • /
    • 2010
  • In this paper, the ordinariest and strongest simulator that many used to power electronics circuits and many different control technology can apply to more easily understand modeling the element, PSPICE and MATLAB are adapted a micro IGBT, a macro IGBT, PWM generator and to library moeling of validity of the Induction motor is interpreted. Micro IGBT model of demagnetization quality proved for modeling accuracy to through experiment, macromodel IGBT were simulated which the applied to voltage type PWM inverter to the cyclo-converter and induction motor of demagnetization.

Macro Modeling of a Feedback Field-effect Transistor (피드백 전계 효과 트랜지스터의 메크로 모델링 연구)

  • Oh, Jong Hyeok;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.634-636
    • /
    • 2021
  • In this study, we studied the macro-modeling of an feedback field-effect transistor (FBFET) using SPICE simulation. The previously presented macro-model of the FBFET is consisting of two circuits. one is charge integration circuit, and the other is current generation circuit. The previous current generation circuit has problem that can't predict performance accurately of the circuits, due to implementing only IDS-VGS characteristics. To solve this problem, we presents a model that can implement not only IDS-VGS characteristics but alos IDS-VDS characteristics by adding the diode in the current generation circuit.

  • PDF

Heat kTransfer Modeling and Characteristics Analysis of Impulsed Magnetizing Fisture (임펄스 착자요크의 열전달 모델링 및 특성 해석)

  • 백수현;김필수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.381-387
    • /
    • 1994
  • In this paper, we found the improved SPICE heat transfer modeling of impulsed magnetizing fixture system and investigated temperature characteristics using the proposed model. As the detailed thermal characteristics of magnetizing fixture can be obtained, the efficient design of the impulsed magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important of forecast the characteristics of the magnetizing fixture which produce desired magnet will be possible using our heat transfer modeling. The knowledge of the temperature of the magnetizing fixture is very important to forecast the characteristics of the magnetizing circuits under different conditions. The capacitor voltage was not raised above 810[V] to protect the magnetizing fixture from excessive heating. The purpose of this work is to compute the temperature increasing for different magnetizing conditions. The method uses multi-lumped model with equivalent thermal resistance and thermal capacitance. The reliable results are obtained by using iron core fixture (stator magnet of air cleaner DC motor) coupled to a low-voltage magnetizer(charging voltage : 1000[V], capacitor : 3825[$\mu$F]. The modeling and experimental results are in close aggrement.

  • PDF

Soft Error Susceptibility Analysis for Sequential Circuit Elements Based on EPPM

  • Cai, Shuo;Kuang, Ji-Shun;Liu, Tie-Qiao;Wang, Wei-Zheng
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.168-176
    • /
    • 2015
  • Due to the reduction in device feature size, transient faults (soft errors) in logic circuits induced by radiations increase dramatically. Many researches have been done in modeling and analyzing the susceptibility of sequential circuit elements caused by soft errors. However, to the best knowledge of the authors, there is no work which has well considerated the feedback characteristics and the multiple clock cycles of sequential circuits. In this paper, we present a new method for evaluating the susceptibility of sequential circuit elements to soft errors. The proposed method uses four Error Propagation Probability Matrixs (EPPMs) to represent the error propagation probability of logic gates and flip-flops in current clock cycle. Based on the predefined matrix union operations, the susceptibility of circuit elements in multiple clock cycles can be evaluated. Experimental results on ISCAS'89 benchmark circuits show that our method is more accurate and efficient than previous methods.

Variable Time Step Simulation and Analysis of Hydraulic Control Systems using Transmission Line Modeling (전달관로 모델링을 이용한 유압제어 시스템의 가변 시간스텝 시뮬레이션 및 해석)

  • Hwang, Un-Gyu;Jo, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.843-850
    • /
    • 2002
  • This paper presents a simulation method using the transmission line modeling to reduce simulation runtime of hydraulic control systems. This method is based on separating the system components each other using the transmission line elements prior to simulation, which leads to divide the simulated system into several subsystems suitable for an even more efficient integration. It can also handle nonlinearities and discontinuities without flag signal when restarting integration. By applying variable integration timestep to parallel hydraulic circuits via parallel processing, it is shown that simulation run-time can be reduced significantly compared with that of Runge Kutta method.

The variable hysteresis modeling circuit for spintronic device (자성반도체의 가변 히스테리시스 특성 모델링 회로)

  • Hwang WonSeok;cho Chung-Hyun;kim Bumsoo;Lee GabYong;Lee ChangWoo;Kim Dong Myong;Min Keung-Sik;Kim Daejeong
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.447-450
    • /
    • 2004
  • The modeling circuit becomes more important in developing various magnetic devices regarding the fact that the competitive architecture and circuitry should be developed simultaneously. In this paper, we introduce a modeling circuit for hysteresis characteristic of a magnetic device, which is a major characteristic in the spin dependent magnetic material. This transistor-level model is conspicuous in that it can be usefully embodied in real circuits rather than conventional SPICE models are only for simulations.

  • PDF

New Discrete-Time Modeling and Simulation Techniques for PWM converters (PWM 컨버터에 대한 새로운 이산시간 모델링 및 시뮬레이션 기법)

  • 김만호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.289-296
    • /
    • 2002
  • New discrete-time modeling and simulation techniques are proposed which take advantages of the special features of PWM converter power stages and their compensation circuits. These techniques provide reduction of system order, and allow for the faster simulation without any numerical convergence problem. A buck converter with two-stage output filter Is employed to confirm the usefulness of the proposed techniques. The simulation results show these techniques can simulate the responoes of PWM converter system up to high frequencies.

Modeling of High-speed 3-Disional Embedded Inductors (고속 3차원 매립 인덕터에 대한 모델링)

  • 이서구;최종성;윤일구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.139-142
    • /
    • 2001
  • As microeletronics technology continues to progress, there is also a continuous demand on highly integration and miniaturization of systems. For example, it is desirable to package several integrated circuits together in multilayer structure, such as multichip modules, to achieve higher levels of compactness and higher performance. Passive components (i.e., capacitors, resistors, and inductors) are very important for many MCM applications. In addition, the low-temperature co-fired ceramic (LTCC) process has considerable potential for embedding passive components in a small area at a low cost. In this paper, we investigate a method of statistically modeling integrated passive devices from just a small number of test structures. A set of LTCC inductors is fabricated and their scattering parameters (5-parameters) are measured for a range of frequencies from 50MHz to 5GHz. An accurate model for each test structure is obtained by using a building block based modeling methodology and circuit parameter optimization using the HSPICE circuit simulator.

  • PDF

A data structure and algorithm for MOS logic-with-timing simulation (MOS 로직 및 타이밍 시뮬레이션을 위한 데이타구조 및 알고리즘)

  • 공진흥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.206-219
    • /
    • 1996
  • This paper describes a data structure and evaluation algorithm to improve the perofmrances MOS logic-with-timing simulation in computation and accuracy. In order to efficiently simulate the logic and timing of driver-load networks, (1) a tree data structure to represent the mutual interconnection topology of switches and nodes in the driver-lod network, and (2) an algebraic modeling to efficiently deal with the new represetnation, (3) an evaluation algorithm to compute the linear resistive and capacitive behavior with the new modeling of driver-load networks are developed. The higher modeling presented here supports the structural and functional compatibility with the linear switch-level to simulate the logic-with-timing of digital MOS circuits at a mixed-level. This research attempts to integrate the new approach into the existing simulator RSIM, which yield a mixed-klevel logic-with-timing simulator MIXIM. The experimental results show that (1) MIXIM is a far superior to RSIM in computation speed and timing accuracy; and notably (2) th etiming simulation for driver-load netowrks produces the accuracy ranged within 17% with respect ot the analog simulator SPICE.

  • PDF

A Study on AC Machine Modeling using Complex Vector and dq Transformation (복소 벡터와 dq 변환을 이용한 교류기 모델링에 관한 연구)

  • Hong, Sun-Ki;Park, Jin-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1601-1605
    • /
    • 2012
  • Three-phase voltage and current is applied to the three-phase alternating current motors which are commonly used in industry. Three phase variables of a, b, c are converted into d, q, 0 axis and the AC machines are modeled and analyzed. Basically the coordinate transformation or d-q transformation is used for convenience, a few steps are needed to analyze the motor performances - separating d and q components, establishing each equivalent circuit, and solving the differential equations of the circuits. In this study, a modeling technique of induction motor using complex vector is proposed and it can explain the induction motor physically. This method does not need the separating process of d and q components. With this technique, the model becomes simple, is easy to understand in physical, and can get the same results with those from the other models. These simulation results of the proposed model are compared with them for the conformation of the proposed method.