• Title/Summary/Keyword: Circuit Break

Search Result 77, Processing Time 0.03 seconds

Study on the Performance Verification Method and Failure Mechanism of Grading Capacitor of a Two-break Circuit-breaker (2점절 차단기 균압용 콘덴서 절연파괴 고장 메커니즘 및 성능검증 방법에 관한 연구)

  • Oh, SeungRyle;Han, Kisun;Kim, TaeKyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.1
    • /
    • pp.11-15
    • /
    • 2019
  • Recently, the circuit-breaker rated voltage is getting higher as the transmission voltage increases. To increase the circuit-breaker rated voltage, a multi-break circuit-breaker which has two or more breakers in series is adopted. For multi-break circuit-breaker, a grading capacitor is used to mitigate the Transient Recovery Voltage(TRV) and control the voltage distribution across the individual interrupter units. However, all over the world, there are many failures such as mechanical damage, explosion due to insulation breakdown. Therefore, it is necessary to study the causes of failure and the new performance verification method. In this paper, we investigate the causes of dielectric breakdown of the grading capacitors in the KEPCO power system and propose the performance verification method.

Short-circuit making and breaking test for 362kV, 63kA circuit breaker (362kV, 63kA 초고압차단기 투입차단시험)

  • Park Seung Jae;Suh Yoon Taek;Yoon Hack Dong;Kim Maeng Hyun;Koh Heui Seog
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.554-556
    • /
    • 2004
  • Testing capacity of KERI synthetic short-circuit testing facilities has been upgraded to fulfill the requirements up to 550kV 63kA, 1-break circuit breaker ratings. Specially the current capacity was increased 50kA to 63kA and the full type test of 362kV 63kA circuit breaker(1-break) was firstly completed in domestic. UP to now, domestic manufacturers have depended on the foreign testing laboratory for performance verification of newly designed products. This paper introduces the summary of the increased short-circuit testing facilities, the testing techniques and its results for the making and breaking performance of 362kV, 63kA circuit breaker which was Performed according to IEEE C37.06(1999) used in North America.

  • PDF

Opening Spring Modeling of Current Circuit Breaker Mechanism with respect to Opening Speed using Energy Method (전류 차단기 메커니즘에서 에너지방법을 이용한 차단 속도에 따른 스프링 모델링)

  • Kwon, Byung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.688-692
    • /
    • 2000
  • This study proposed design parameters of opening spring of circuit breaker that cut off the over-current in order to protect the electric device about opening speed using the energy method. We simulated the opening kinetic energy, the potential energy of opening spring and the design parameters of opening spring with respect to opening speed of VCB (Vacuum Circuit Breaker)'s moving contactor which has 24kV 25kA break capacity. From the result of simulation the initial tensional force and the final tensional force of the opening spring chose 107kgf and 282kgf respectively. Through the dynamic analysis using ADAMS, We verified that the opening speed of moving contactor satisfied break capacity of VCB and analyzed opening dynamic characteristics of VCB such as the opening displacement, the opening velocity and the opening acceleration of moving contactor in time domain.

  • PDF

A Study on the Modeling and Simulation Analysis of Rermote Solid State Power Controller (원격전력제어 장치의 모델링 및 시뮬레이션 분석에 대한 연구)

  • Jeon, Yeong Cheol;Lee, Hyuek Jae;Chong, Won Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.461-464
    • /
    • 2009
  • The conventional electro-mechanical circuit break and relay are widely used in large-sized DC power system. However, recently due to high reliability, remote controllability and small power dissipation of a RSPC (Remote Solid State Power Controller), high-friendly DC power systems have increasingly adopted the RSPC as an essential element. In this paper, we have conducted the modeling of a RSPC circuit and the simulation analysis for $I^2t$ curve, respectively.

  • PDF

Arc Extinguishment for Low-voltage DC (LVDC) Circuit Breaker by PPTC Device (PPTC 소자를 사용한 저전압 직류차단기의 아크소호기술)

  • Kim, Yong-Jung;Na, Jeaho;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.299-304
    • /
    • 2018
  • An ideal circuit breaker should supply electric power to loads without losses in a conduction state and completely isolate the load from the power source by providing insulation strength in a break state. Fault current is relatively easy to break in an Alternating Current (AC) circuit breaker because the AC current becomes zero at every half cycle. However, fault current in DC circuit breaker (DCCB) should be reduced by generating a high arc voltage at the breaker contact point. Large fire may occur if the DCCB does not take sufficient arc voltage and allows the continuous flow of the arc fault current with high temperature. A semiconductor circuit breaker with a power electronic device has many advantages. These advantages include quick breaking time, lack of arc generation, and lower noise than mechanical circuit breakers. However, a large load capacity cannot be applied because of large conduction loss. An extinguishing technology of DCCB with polymeric positive temperature coefficient (PPTC) device is proposed and evaluated through experiments in this study to take advantage of low conduction loss of mechanical circuit breaker and arcless breaking characteristic of semiconductor devices.

Design and Analysis of 16 V N-TYPE MOSFET Transistor for the Output Resistance Improvement at Low Gate Bias (16 V 급 NMOSFET 소자의 낮은 게이트 전압 영역에서 출력저항 개선에 대한 연구)

  • Kim, Young-Mok;Lee, Han-Sin;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.2
    • /
    • pp.104-110
    • /
    • 2008
  • In this paper we proposed a new source-drain structure for N-type MOSFET which can suppress the output resistance reduction of a device in saturation region due to soft break down leakage at high drain voltage when the gate is biased around relatively low voltage. When a device is generally used as a switch at high gate bias the current level is very important for the operation. but in electronic circuit like an amplifier we should mainly consider the output resistance for the stable voltage gain and the operation at low gate bias. Hence with T-SUPREM simulator we designed devices that operate at low gate bias and high gate bias respectively without a extra photo mask layer and ion-implantation steps. As a result the soft break down leakage due to impact ionization is reduced remarkably and the output resistance increases about 3 times in the device that operates at the low gate bias. Also it is expected that electronic circuit designers can easily design a circuit using the offered N-type MOSFET device with the better output resistance.

Study of Short-Circuit Currents Around Dĕtmarovice Power Station

  • Ali, Shehab Abdulwadood
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.117-124
    • /
    • 2014
  • The calculation of short-circuit currents is important for power systems operation and restoration, and for determining the means to protect human lives and properties. In this paper, a part of a power system network, around the D$\breve{e}$tmarovice power station in Czech Republic, was simulated by the well known program EMTP-ATPDraw (Electromagnetic Transients Program-Alternative Transient Program), and short-circuit currents and voltages were calculated at different points in the electric network and presented as a time function by the PlotXY program. Calculations were done just for phase-to-ground, and for the three-phase short-circuit at the Kun$\check{c}$ice substation. The results were important for determining the characteristics of the equipment required to withstand or break the short-circuit current; for this reason, the calculations were repeated using earth-fault resistances only for the case of busbar KUN shown in Figs. 5 and 6.

The study of a primary role of Back up Breaker and Making Switch for Short Circuit Test (단락시험에서 후비보호차단기와 투입스위치의 중요 역할)

  • Kim, Sun-Koo;Kim, Seon-Ho;Kim, Won-Man;Roh, Chang-Il;Lee, Dong-Jun;Jung, Heung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.915-916
    • /
    • 2007
  • There are many equipments for the Short Circuit Test, for example Short Circuit Generator, Induction Motor, Sequence Timer, Exciter, CLR, Back Up Breaker, Making Switch and TRV etc. Especially Back up Breaker and Making Switch are very important equipments to test the short circuit test. A role of a Back up Breaker is to break high-voltage and high-current for short circuit test and a Making Switch should be operated always same speed/time and kept electrical-mechanical characteristics to make the voltage and current of short circuit test. This study introduces to the short circuit test also to kinds, principal movements and compare them of Back up Breaker and Making Switch.

  • PDF

The Characteristic Study for Small Current Breaking of High Speed DC Circuit Breaker (직류고속도차단기의 소전류 차단 특성연구)

  • Min Byung-Hoon;Jang Woo-Jin;Ko In-Suk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.8
    • /
    • pp.396-402
    • /
    • 2006
  • Even the case DC circuit Breaker have good quality for interruption of high current like heavy load current, short-circuit current, the verification for small current breaking capability of circuit breaker should be performed. It comes from the reason DC small current breaking failure can be lead to break out second heavy fault condition and in the long run substation shutdown. In this paper, we can find the characteristics of DC small current and international test standard discription about small current breaking and one of the proper solution to get over it.

A Study on Dynamic Characteristics of Electrical Fire Prevention Control Devices with a lamp and a motor load (전등 부하 및 전동기 부하시 전기화재예방 제어장치의 동작 특성에 관한 연구)

  • Lee, Sang-Ho;Oh, Hong-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • Recently, the occurrences of electrical fire have been suppressed by an earth leakage breaker(ELB), a no fuse breaker(NFB) and a fuse in case of an earth leakage, a short circuit and an over current. But it is impossible for the ELB to break the circuit in the case of the failure of pressure contacts on connecting points and the momentary short circuit. Therefore, it is require to study the constructive problem of the ELB. In this paper, we have developed the auxiliary control device, electrical fire prevention control device(EFPCD), of the ELB. And we have tested the operation characteristics of the ELB according to the load(R, L) As a result of this experiment, we could prevent the electrical fire due to the spark and the overheat occurring in the failure of pressure contacts on connecting points and the momentary short circuit.

  • PDF