• 제목/요약/키워드: Ciphertexts

검색결과 46건 처리시간 0.029초

함수 생략 오류를 이용하는 AES에 대한 신규 차분 오류 공격 (Novel Differential Fault Attack Using Function-Skipping on AES)

  • 김주환;이종혁;한동국
    • 정보보호학회논문지
    • /
    • 제30권6호
    • /
    • pp.1263-1270
    • /
    • 2020
  • 차분 오류 공격은 암호화 장비에 인위적인 오작동을 유도하여 발생한 오류 암호문과 정상 암호문의 차분을 이용해 비밀키를 분석하는 기법이다. 일반적으로 차분 오류 공격은 암호 알고리즘의 중간값을 변조시켰을 때의 결과를 이용한다. 반면, 우리는 함수 전체를 생략시켰을 때의 결과를 이용하는 차분 오류 공격을 제안한다. 제안한 기법은 단일 오류 주입 암호문으로 수 초 이내에 전체 비밀키 복구가 가능한 매우 낮은 공격 복잡도를 갖는다. 또한, 우리는 오류가 함수 생략을 유도했는지 검증하는 방안을 제시함으로써 공격자 가정을 현실적으로 낮췄다. 제안한 기법을 실험적으로 검증하기 위해 Riscure 사의 Piñata 보드에 대한 오류 주입 공격을 수행한 결과 함수 생략으로 유도되지 않은 모든 오류 암호문을 거를 수 있었으며, 수 초 내에 비밀키 복구에 성공했다.

Privacy-Preserving Key-Updatable Public Key Encryption with Keyword Search Supporting Ciphertext Sharing Function

  • Wang, Fen;Lu, Yang;Wang, Zhongqi;Tian, Jinmei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권1호
    • /
    • pp.266-286
    • /
    • 2022
  • Public key encryption with keyword search (PEKS) allows a user to make search on ciphertexts without disclosing the information of encrypted messages and keywords. In practice, cryptographic operations often occur on insecure devices or mobile devices. But, these devices face the risk of being lost or stolen. Therefore, the secret keys stored on these devices are likely to be exposed. To handle the key exposure problem in PEKS, the notion of key-updatable PEKS (KU-PEKS) was proposed recently. In KU-PEKS, the users' keys can be updated as the system runs. Nevertheless, the existing KU-PEKS framework has some weaknesses. Firstly, it can't update the keyword ciphertexts on the storage server without leaking keyword information. Secondly, it needs to send the search tokens to the storage server by secure channels. Thirdly, it does not consider the search token security. In this work, a new PEKS framework named key-updatable and ciphertext-sharable PEKS (KU-CS-PEKS) is devised. This novel framework effectively overcomes the weaknesses in KU-PEKS and has the ciphertext sharing function which is not supported by KU-PEKS. The security notions for KU-CS-PEKS are formally defined and then a concrete KU-CS-PEKS scheme is proposed. The security proofs demonstrate that the KU-CS-PEKS scheme guarantees both the keyword ciphertext privacy and the search token privacy. The experimental results and comparisons bear out that the proposed scheme is practicable.

Provably Secure Length-Saving Public-Key Encryption Scheme under the Computational Diffie-Hellman Assumption

  • Baek, Joon-Sang;Lee, Byoung-Cheon;Kim, Kwang-Jo
    • ETRI Journal
    • /
    • 제22권4호
    • /
    • pp.25-31
    • /
    • 2000
  • Design of secure and efficient public-key encryption schemes under weaker computational assumptions has been regarded as an important and challenging task. As far as ElGamal-type encryption schemes are concerned, some variants of the original ElGamal encryption scheme based on weaker computational assumption have been proposed: Although security of the ElGamal variant of Fujisaki-Okamoto public -key encryption scheme and Cramer and Shoup's encryption scheme is based on the Decisional Diffie-Hellman Assumption (DDH-A), security of the recent Pointcheval's ElGamal encryption variant is based on the Computational Diffie-Hellman Assumption (CDH-A), which is known to be weaker than DDH-A. In this paper, we propose new ElGamal encryption variants whose security is based on CDH-A and the Elliptic Curve Computational Diffie-Hellman Assumption (EC-CDH-A). Also, we show that the proposed variants are secure against the adaptive chosen-ciphertext attack in the random oracle model. An important feature of the proposed variants is length-efficiency which provides shorter ciphertexts than those of other schemes.

  • PDF

Bilinear Group에서 속성 은닉을 가지는 안전한 내적 암호화 방식 (Secure Inner Product Encryption Scheme with Attribute Hiding in Bilinear Groups)

  • 리프키 사디킨;박영호
    • 전자공학회논문지
    • /
    • 제51권1호
    • /
    • pp.57-70
    • /
    • 2014
  • 내적 암호화 방식은 비밀키와 암호문 사이에 파인 그레인 관계를 제공하는 암호학적 프리미티브이다. 본 논문은 완전한 속성 은닉 보호를 수행하는 새로운 IPE 방식을 제안한다. 제안한 IPE 방식은 합성 위수의 bilinear groups에 기반한다. 본 논문에서는 이중 암호화 시스템 체계를 사용하여 제안한 IPE의 완전한 속성 은닉 보호를 증명한다. 성능 분석에서 기존의 IPE 방식들과 제안한 IPE 방식의 연산량과 메모리 할당량을 비교한다.

Optical Asymmetric Cryptography Modifying the RSA Public-key Protocol

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • 제4권2호
    • /
    • pp.103-114
    • /
    • 2020
  • A new optical asymmetric cryptosystem is proposed by modifying the asymmetric RSA public-key protocol required in a cryptosystem. The proposed asymmetric public-key algorithm can be optically implemented by combining a two-step quadrature phase-shifting digital holographic encryption method with the modified RSA public-key algorithm; then two pairs of public-private keys are used to encrypt and decrypt the plaintext. Public keys and ciphertexts are digital holograms that are Fourier-transform holograms, and are recorded on CCDs with 256-gray-level quantized intensities in the optical architecture. The plaintext can only be decrypted by the private keys, which are acquired by the corresponding asymmetric public-key-generation algorithm. Schematically, the proposed optical architecture has the advantage of producing a complicated, asymmetric public-key cryptosystem that can enhance security strength compared to the conventional electronic RSA public-key cryptosystem. Numerical simulations are carried out to demonstrate the validity and effectiveness of the proposed method, by evaluating decryption performance and analysis. The proposed method shows feasibility for application to an asymmetric public-key cryptosystem.

Hierarchical Identity-Based Encryption with Constant-Size Private Keys

  • Zhang, Leyou;Wu, Qing;Hu, Yupu
    • ETRI Journal
    • /
    • 제34권1호
    • /
    • pp.142-145
    • /
    • 2012
  • The main challenge at present in constructing hierarchical identity-based encryption (HIBE) is to solve the trade-off between private-key size and ciphertext size. At least one private-key size or ciphertext size in the existing schemes must rely on the hierarchy depth. In this letter, a new hierarchical computing technique is introduced to HIBE. Unlike others, the proposed scheme, which consists of only two group elements, achieves constant-size private keys. In addition, the ciphertext consists of just three group elements, regardless of the hierarchy depth. To the best of our knowledge, it is the first efficient scheme where both ciphertexts and private keys achieve O(1)-size, which is the best trade-off between private-key size and ciphertext size at present. We also give the security proof in the selective-identity model.

Differential Fault Analysis for Round-Reduced AES by Fault Injection

  • Park, Jea-Hoon;Moon, Sang-Jae;Choi, Doo-Ho;Kang, You-Sung;Ha, Jae-Cheol
    • ETRI Journal
    • /
    • 제33권3호
    • /
    • pp.434-442
    • /
    • 2011
  • This paper presents a practical differential fault analysis method for the faulty Advanced Encryption Standard (AES) with a reduced round by means of a semi-invasive fault injection. To verify our proposal, we implement the AES software on the ATmega128 microcontroller as recommended in the standard document FIPS 197. We reduce the number of rounds using a laser beam injection in the experiment. To deduce the initial round key, we perform an exhaustive search for possible key bytes associated with faulty ciphertexts. Based on the simulation result, our proposal extracts the AES 128-bit secret key in less than 10 hours with 10 pairs of plaintext and faulty ciphertext.

개선된 Identity 기반의 브로드캐스트 암호화 기법 (Improved Identity-Based Broadcast Encryption)

  • 김기탁;박종환;이동훈
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 한국정보통신설비학회 2008년도 정보통신설비 학술대회
    • /
    • pp.347-349
    • /
    • 2008
  • The primitive of Identity-Based Broadcast Encryption allows a sender to distribute session keys or messages for a dynamically changing set of receivers using the receiver's identity as a public key. We already know that the trade-off exists the efficiency between the public parameter size and the ciphertext size. So, if the ciphertext size is O(1), then the public parameter size may be O(n). Some of IBBE scheme take the public parameters as input in decryption phase. Thus, a decryption device (or client) has to store the public parameters or receive it. This means that a decryption device (or client) has to have the proper size storage. Recently, delerabl$\square$e proposed an IBBE which have the O(1) size ciphertexts and the O(n) size public parameters. In this paper, we present an IBBE scheme. In our construction the ciphertext size and the public parameter size are sub-linear in the total number of receivers, and the private key size is constant.

  • PDF

Optical Encryption Scheme for Cipher Feedback Block Mode Using Two-step Phase-shifting Interferometry

  • Jeon, Seok Hee;Gil, Sang Keun
    • Current Optics and Photonics
    • /
    • 제5권2호
    • /
    • pp.155-163
    • /
    • 2021
  • We propose a novel optical encryption scheme for cipher-feedback-block (CFB) mode, capable of encrypting two-dimensional (2D) page data with the use of two-step phase-shifting digital interferometry utilizing orthogonal polarization, in which the CFB algorithm is modified into an optical method to enhance security. The encryption is performed in the Fourier domain to record interferograms on charge-coupled devices (CCD)s with 256 quantized gray levels. A page of plaintext is encrypted into digital interferograms of ciphertexts, which are transmitted over a digital information network and then can be decrypted by digital computation according to the given CFB algorithm. The encryption key used in the decryption procedure and the plaintext are reconstructed by dual phase-shifting interferometry, providing high security in the cryptosystem. Also, each plaintext is sequentially encrypted using different encryption keys. The random-phase mask attached to the plaintext provides resistance against possible attacks. The feasibility and reliability of the proposed CFB method are verified and analyzed with numerical simulations.

New Construction of Order-Preserving Encryption Based on Order-Revealing Encryption

  • Kim, Kee Sung
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1211-1217
    • /
    • 2019
  • Developing methods to search over an encrypted database (EDB) have received a lot of attention in the last few years. Among them, order-revealing encryption (OREnc) and order-preserving encryption (OPEnc) are the core parts in the case of range queries. Recently, some ideally-secure OPEnc schemes whose ciphertexts reveal no additional information beyond the order of the underlying plaintexts have been proposed. However, these schemes either require a large round complexity or a large persistent client-side storage of size O(n) where n denotes the number of encrypted items stored in EDB. In this work, we propose a new construction of an efficient OPEnc scheme based on an OREnc scheme. Security of our construction inherits the security of the underlying OREnc scheme. Moreover, we also show that the construction of a non-interactive ideally-secure OPEnc scheme with a constant client-side storage is theoretically possible from our construction.