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Abstract 
Developing methods to search over an encrypted database (EDB) have received a lot of attention in the last few 
years. Among them, order-revealing encryption (OREnc) and order-preserving encryption (OPEnc) are the 
core parts in the case of range queries. Recently, some ideally-secure OPEnc schemes whose ciphertexts reveal 
no additional information beyond the order of the underlying plaintexts have been proposed. However, these 
schemes either require a large round complexity or a large persistent client-side storage of size O(n) where n 
denotes the number of encrypted items stored in EDB. In this work, we propose a new construction of an 
efficient OPEnc scheme based on an OREnc scheme. Security of our construction inherits the security of the 
underlying OREnc scheme. Moreover, we also show that the construction of a non-interactive ideally-secure 
OPEnc scheme with a constant client-side storage is theoretically possible from our construction. 
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1. Introduction 

One of promising solutions to protect the confidentiality of sensitive data is to use property-preserving 
encryption schemes which preserve some property of plaintexts, then perform query evaluation over the 
encrypted database (EDB). Supporting efficient operations on EDB such as sorting and range queries, 
order-preserving encryption (OPEnc) [1,2] and order-revealing encryption (OREnc) [3-5] have been 
proposed. 

OREnc is a special type of symmetric encryptions which leaks the order of the underlying plaintexts 
through a publicly computable comparison function. Recently, Boneh et al. [5] proposed the first stateless 
and non-interactive OREnc scheme which achieves the ideal security. However, their OREnc scheme 
relies on multilinear maps requiring heavy computation and strong assumption, also suffering from 
security analysis [6,7], thus is not efficiently implementable today. Chenette et al. [3] proposed the first 
efficiently-implementable OREnc scheme based on a pseudo-random function. They also provided a new 
security model that precisely quantifies what information of plaintexts is leaked. Later, Lewi and Wu [4] 
proposed a new OREnc scheme with reduced leakage as compared to [3]. 

OPEnc is a special case of OREnc whose ciphertexts have the same order as their plaintexts, thus it 
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enables a server to get the same results as if it had operated on plaintexts without any modification on 
DBMS. It has been known that any immutable ideally-secure OPEnc schemes must have the 
exponentially large ciphertext space. Recently, some interactive and mutable order-preserving encryption 
(or encoding) schemes with the ideal security have been proposed. Kerschbaum [1] proposed the first 
frequency-hiding OPEnc scheme that randomizes the ciphertexts to hide the frequency of the underlying 
plaintexts. Recently, Roche et al. [2] gave a partial order-preserving encryption (POPEnc) scheme that is 
mainly for the application scenarios where a large number of insertions and a moderate number of range 
queries, and achieves even stronger security compare to [1]. However, these ideally-secure OPEnc 
schemes either suffer from a large round and client-side storage complexities or incomplete functionalities, 
as described in Table 1.  

In this work, we propose a possible answer to the following question: Is it possible to design a non-
interactive ideally-secure OPEnc with a constant-size client storage? 

More specifically, we present how to improve the round and client-side storage complexities on the 
exiting ideally-secure mutable order-preserving encryption protocol using the public comparison 
functionality of an OREnc scheme. By composing our method with an existing OREnc scheme, we can 
obtain an efficient OPEnc scheme which security is at least as strong as one of the underlying OREnc 
scheme. Table 1 presents comparison our constructions based on [3-5] with the existing ideally-secure 
OPEnc schemes in terms of efficiency and security. Composing with [3,4], the resulting constructions 
show better efficiency both of the number of rounds and the client-side storage, but cannot guarantee the 
ideal security. Note that the construction based on [5] is the first non-interactive ideally-secure OPEnc 
scheme with a constant-size client storage, but it is currently impractical to implement as described 
before. 

 
Table 1. Comparison of the existing ideally-secure OPEnc schemes 

Scheme 
Rounds Client storage 

Security Note 
Insert Query Working Persistent 

Previous 
constructions 

 

[1] 1 a 1 a O(n) O(n) Ideal F.H. 

[2] 1 b O(1) b O(nε) 
(0 < ε < 1) 

O(1) Ideal F.H. 
 Partial OPE 

Our constructions       

Based on [3] 1 1 O(1) O(1) Diff. Bit  - 

Based on [4] 1 1 O(1) O(1) Diff. Block - 

Based on [5] 1 1 O(1) O(1) Ideal Impractical 

n is the total number of encrypted data in EDB. Diff. Bit (Block) indicates the position of the first differing bit (block) 
of two corresponding plaintexts. F.H. means the frequency-hiding property. Partial OPE means a sizable fraction of 
ciphertexts in EDB remains incomparable. 
aWorst case: O(n), bworst case: O(n1-ε). 

 
The rest paper is organized as follows: Section 2 reviews the formal notion and security of OREnc 

(OPEnc). In Section 3, we propose our new construction of OPEnc based on OREnc. In Section 4, we 
analyze our construction. Section 5 concludes this paper. 
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2. Preliminaries 

We write λ as a security parameter. For two bit strings x, y ∈ {0,1}*, x || y denotes the concatenation of 
x and y. We say that two distributions D1 and D2 are computationally indistinguishable if there is no 
efficient poly-time adversary can distinguish D1 from D2 except with negligible probability. 

 
2.1 Formal Notion of Order-Revealing Encryption 

 

An order-revealing encryption scheme ∏OREnc consists of the following three algorithms (OREnc.Setup, 
OREnc.Encrypt, OREnc.Compare) defined over a well-ordered domain D and a range R. 

 
 OREnc.Setup(1λ) → skey : For a security parameter λ, this setup algorithm generates a secret key skey.  
 OREnc.Encrypt(msg, skey) → ctx : For a secret key skey and a message msg ∈ D, this encryption 

algorithm computes a ciphertext ctx ∈ R .   
 OREnc.Compare(ctx1, ctx2) → b : On input two ciphertexts ctx1 and ctx2, this comparison algorithm 

outputs a bit b ∈ {0, 1}. (b  = 1 means msg1 < msg2) 
 

Correctness. For a fixed security parameter λ, a given ∏OREnc is correct if for skey ← OREnc.Setup(1λ), 

and any messages msg1, msg2 ∈ D (msg1 < msg2),  OREnc.Compare(ctx1, ctx2) = 1 where ctx1 ← 

OREnc.Encrypt(msg1, skey) and ctx2 ← OREnc.Encrypt(msg2, skey). 
 

2.2 Formal Notion of Order-Preserving Encryption 
 

An order-preserving encryption scheme ∏OPEnc consists of the following two algorithms (OPEnc.Setup, 
OPEnc.Encrypt) defined over a well-ordered domain D and a range R. 

 
 OPEnc.Setup(1λ) → skey : For a security parameter λ, this setup algorithm generates a secret key skey.  
 OPEnc.Encrypt(msg, skey) → ctx : On input the secret key skey and a plaintext msg ∈ D, this 

encryption algorithm computes a ciphertext ctx ∈ R.  
 

Correctness. For a fixed security parameter λ, a given ∏OPEnc is correct if for skey ← OPEnc.Setup(1λ), 

and any messages msg1, msg2 ∈ D (msg1 < msg2),  ctx1 < ctx2 where ctx1 ← OPEnc.Encrypt(msg1, skey) and 

ctx2 ← OPEnc.Encrypt(msg2, skey). Thus, OPEnc can be seen as a special case of OREnc where the 
comparison algorithm output 1 if ctx1 < ctx2. 

As described above, these two schemes don’t contain a decryption algorithm, but the following two 
options can be applied. Note that the secret key holder can generate a ciphertext ctx of any messages he 
choose, and he can also verify the output of OREnc.Compare(ctx, ctx*) where ctx* is the target ciphertext. 
Thus, he can decrypt ctx* by performing the binary search. Another method which avoids the logarithmic 
scale binary search overhead is combining with a CPA-secure encryption scheme, i.e., inserting an 
encryption of the same message under this symmetric encryption scheme together. Note that this 
additional ciphertext doesn’t reveal any information about the underlying plaintext due to the CPA 
security. 
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2.3 Security of OR(P)Enc 
 

In this section, we review a simulation-based security model [3] of OREnc that precisely quantifies 
what information of plaintexts is leaked as defining a leakage function. We denote an adversary and a 

simulator for some q = poly(λ) by Adv = (A1,…,  Aq) and Sim = (S0,…,  Sq), respectively. ∏OREnc = 

(OREnc.Setup, OREnc.Encrypt, OREnc.Compare) be an OREnc scheme, and Lkg(·) denotes a leakage 

function of ∏OREnc. For a security parameter λ, the experiment is defined as follow: 

 :஺∏(λ)ܮܣܧܴ 

1. skey ← OREnc.Setup(1λ)  

2. (msg1, stA) ← A1(1λ) 

3. ctx1 ← OREnc.Encrypt(msg1, skey) 

4. for 2 ≤ i ≤ q: 

         (msgi, stA) ← Ai (stA , ctx1,…, ctxi-1) 

ctxi ← OREnc.Encrypt(msgi , skey) 

5. output (ctx1,…, ctxq) and stA 

 :ௌ∏(λ)ܯܫܵ

1. sts ← S0 (1λ)  

2. (msg1, stA) ← A1(1λ) 

3. (ctx1 , sts ) ← S1 (Lkg(msg1), sts) 

4. for 2 ≤ i ≤ q: 

      (msgi, stA) ← Ai (stA , ctx1,…, ctxi-1) 

(ctxi , sts ) ← Si (Lkg(msg1,…, msgi), sts) 

5. output (ctx1,…, ctxq) and stA 

 

We say that ∏OREnc is a secure with Lkg(·) if for all poly-size adversaries Adv, there exists a simulator 

Sim such that the two distributions ܴܮܣܧ஺∏(λ) and ܵܯܫௌ∏(λ) are computationally indistinguishable. From 

the security notion, we also say that ∏OREnc is a ideally-secure if the leakage function Lkg(·) reveals only 

the relative order of the underlying plaintexts. Note that we can apply the same experiment to an OPEnc 
scheme since it can be seen as a special case of OREnc. 

 
 

3. Proposed Scheme 

As described in Section 1, it is natural to obtain an OREnc scheme from a given OPEnc scheme since 
the comparison algorithm of the OREnc scheme can simply return 1 if ctx1 < ctx2  ciphertexts of OPEnc. 
The authors [3] showed how to compose an OPEnc scheme with an OREnc scheme. Their main idea is 
to encrypt a message with the OPEnc scheme, then use this ciphertext as an input of the encryption 
algorithm of OREnc. They also showed that the security of the resulting OREnc scheme is at least as 
strong as the security of the underlying OPEnc scheme. However, there has been no generic construction 
of converting an OREnc scheme into an OPEnc scheme yet. Although some previous works including [3] 
suggested methods to convert their OREnc scheme into OPEnc schemes, this is not generic construction. 
In this section, we propose a generic construction of an OPEnc scheme from a given ORE scheme. 

For a security parameter λ, a domain D = (1,…, M),  a range R = (1,…, N), and an encrypted database 

EDB, we define our construction of an OPEnc scheme based on an OREnc scheme as follows (note that 
OPEnc.Setup(1λ) is identically defined as OREnc.Setup(1λ) of the underlying OREnc). 
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Algorithm 1. OPEnc.Encrypt
Input : a plaintext msg and a secret skey of OREnc 
Output : a ciphertext c 

 

Client : 
1. The client runs ctx1 ← OREnc.Encrypt(msg, skey) and to sends ctx1  to the server. 
 

Server :  
1. If EDB = Ø, then server inserts (-1 || · ) and (N  || · ) .  
2. Using OREnc.Compare and ctx1, the server finds the largest ctxx = (ctxx, 0 || ctxx, 1)           

and the smallest ctxy = ( ctxy, 0 || ctxy, 1) such that msgx ≤ msg < msgy. 
(Here, msgx and msgy denote the plaintexts of ctxx and ctxy, respectively.) 

3. If msgx  = msg, then the server inserts (ctxx, 0 || ctxx, 1) as an encryption c of msg. 
4. Else If ctxy, 0  – ctxx, 0  = 1, the server runs Update(EDB, -1, N),  and goes to Step 2. 
5. Else If the server inserts c =  (ctx0 || ctx1) where ctx0 = ⌈ (ctxx, 0  + ctxy, 0) / 2 ⌉. 

 
Algorithm 2. Update 
Input : sorted distinct set { (ctx1, 0 || ctx1, 1), … , (ctxn, 0 || ctxn, 1) }, a min value a and a max value b 
Output : balanced sorted distinct set { (ctx’1, 0 || ctx1, 1), … , (ctx’n, 0 || ctxn, 1) } 

 

Server :  
1. Compute k ←⌈ (a  + b) / 2 ⌉. 
2. If n = 1, the server updates all ctx1, 0  as  k. 
3. If n = 2, the server updates all ctx1, 0  as k and runs Update({ (ctx2, 0 || ctx2, 1) }, k, b). 
4. If n  > 3, the server updates all ctxi, 0  as k where i = ۂ2/݊ہ + 1,  

runs Update({ (ctx1, 0 || ctx1, 1), … , (ctxi-1, 0 || ctxi-1, 1) }, a, k) and 
runs Update({ (ctxi+1, 0 || ctxi+1, 1), … , (ctxn, 0 || ctxn, 1) }, k, b). 

 
The encryption of our construction consists of two parts ctx0 and ctx1 ciphertexts of OPEnc and OREnc, 

respectively. Basically, the encoding and updating methods of ctx0 can be seen as the non-frequency 
hiding construction of [1], and it has been known to be ideally-secure. Due to the order-preserving 
property of ctx0, the resulting ciphertext ctx0 || ctx1 also preserves the relative order of the underlying 
plaintext. More specifically, to encrypt a given message msg, a client who has a secret key generates an 
encryption ctx1 of an underlying OREnc scheme, then sends it to a server. Using OREnc.Compare and ctx1, 
the server can find the largest ctxx,0 and the smallest ctxy,0 as describe in Step 2.  Here, (ctxx,0 + 1,…, ctxy,0 – 
1) means the range in which the ctx0 can be exist. ctx0 is simply computed as the intermediate value 
between ctxx,0  and ctxy,0. Note that if ciphertext space does not exist, i.e., ctxy,0  – ctxx,0  = 1, the server should 
perform the above update algorithm (Algorithm 2) to reconstruct ctx0’s in EDB. 

 
 

4. Analysis 

In this section, we analyze our construction in terms of correctness and security. 
 

THEOREM 1. (Correctness) Our proposed OPEnc scheme is correct if the underlying OREnc scheme is 
correct. 
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Proof. It is sufficient to show that the underlying OREnc is not correct if the resulting OPEnc scheme 
is not correct. We assume that there exist ctxa and ctxb (ctxa > ctxb) encryptions of msga and msgb (msga < 
msgb). Without loss of generality, we also assume that msga is encrypted as ctxa = (ctxa,0, ctxa,1) first. We 
know that ctxa > ctxb implies ctxa,0 > ctxb,0. When ctxb,0 is generated during the OPEnc.Encrypt algorithm 
where ctxb = (ctxb,0, ctxb,1), the part of determining the relative order of ctxb,0 is only the OREnc.Compare 
algorithm in Step 2. As a result, it implies that the underlying OREnc scheme is not correct. 

 

THEOREM 2. (Security) Our proposed OPEnc scheme is secure with leakage function Lkg(·) of the 
underlying OREnc scheme. 

 

Proof. We write LOPEnc(·) and LOREnc(·) to the leakage functions of our proposed OPEnc scheme and the 
underlying OREnc scheme, respectively. As described before, the generation and updating methods of 
ctx0 can be seen as the non-frequency hiding construction of [1], and it has been known to be ideally 
secure. This means that the first part of the resulting ciphertext c0 reveals only the relative ordering of the 

underlying plaintext. Therefore, a simulator Sim with LOREnc(·) who can simulates ctx1 is always able to 
simulate ctx0 unless the underlying OREnc scheme provides more strong security than the ideal security. 

 
THEOREM 3. (Efficiency) Our proposed OPEnc scheme provides a non-interactive encryption and a 

range query with a constant client-side storage. 
 
Proof. From the specification of Algorithm 1, we know that it doesn’t require any additional rounds to 

encrypt data with a server. The client simply creates ctx1, then sends it to the server. The rest of the 
encryption part is done by the server. Although we have not described in detail how the range query 
works, it is basically done by sending two encrypted boundary points to the server. It means that range 
query also does not require any additional rounds. 

The client should maintain the secret key skey of the OREnc scheme to generate ctx1. Since the 
computation of ctx0, which requires all of the existing ciphertext information, is performed on the server-
side, the client does not need to maintain any additional state except skey. 

 
REMARKS 1. One of the interesting points of our proposed scheme is that the client and the server each 

compute half of the ciphertext. Some sensitive readers might think that it is not natural that the server 
who does not have a secret key generates the final ciphertext. However, this has no effect on functionalities 
of OPEnc such as decryption and range queries, and also no effect on the security since the part of 
ciphertext generated by the server is computed using only the information that has been already disclosed. 

 
REMARKS 2. The ciphertext of our proposed OPEnc scheme consists of two ciphertexts of OPEnc and 

OREnc. This means that each OPEnc and OREnc encryption algorithms have to be performed to generate 
the ciphertext, thus it can be think that it requires roughly more than twice computational overhead 
compared to previous works. However, we know that the client generates only half of the ciphertext, and 
the server who has powerful computation power completes the encryption process, thus it is hard to say 
that efficiency of our proposed scheme is worse than the existing OPEnc schemes. 
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5. Conclusions 

In this work, we proposed a new construction of an OPEnc scheme based on an OREnc scheme with 
the optimal client storage and round complexities. The security of the resulting OPEnc scheme is at least 
as strong as the underlying OREnc’s security. We also gave comparison result our construction with the 
existing ideally-secure OPEnc schemes in terms of efficiency and security. Finally, from our construction, 
we showed that it’s theoretically possible to construct a non-interactive ideally-secure OPEnc scheme 
with a constant client-side storage.  
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