

www.kips.or.kr Copyright© 2019 KIPS

New Construction of Order-Preserving Encryption
Based on Order-Revealing Encryption

Kee Sung Kim*

Abstract
Developing methods to search over an encrypted database (EDB) have received a lot of attention in the last few
years. Among them, order-revealing encryption (OREnc) and order-preserving encryption (OPEnc) are the
core parts in the case of range queries. Recently, some ideally-secure OPEnc schemes whose ciphertexts reveal
no additional information beyond the order of the underlying plaintexts have been proposed. However, these
schemes either require a large round complexity or a large persistent client-side storage of size O(n) where n
denotes the number of encrypted items stored in EDB. In this work, we propose a new construction of an
efficient OPEnc scheme based on an OREnc scheme. Security of our construction inherits the security of the
underlying OREnc scheme. Moreover, we also show that the construction of a non-interactive ideally-secure
OPEnc scheme with a constant client-side storage is theoretically possible from our construction.

Keywords
Database Encryption, Order-Preserving Encryption, Order-Revealing Encryption

1. Introduction

One of promising solutions to protect the confidentiality of sensitive data is to use property-preserving
encryption schemes which preserve some property of plaintexts, then perform query evaluation over the
encrypted database (EDB). Supporting efficient operations on EDB such as sorting and range queries,
order-preserving encryption (OPEnc) [1,2] and order-revealing encryption (OREnc) [3-5] have been
proposed.

OREnc is a special type of symmetric encryptions which leaks the order of the underlying plaintexts
through a publicly computable comparison function. Recently, Boneh et al. [5] proposed the first stateless
and non-interactive OREnc scheme which achieves the ideal security. However, their OREnc scheme
relies on multilinear maps requiring heavy computation and strong assumption, also suffering from
security analysis [6,7], thus is not efficiently implementable today. Chenette et al. [3] proposed the first
efficiently-implementable OREnc scheme based on a pseudo-random function. They also provided a new
security model that precisely quantifies what information of plaintexts is leaked. Later, Lewi and Wu [4]
proposed a new OREnc scheme with reduced leakage as compared to [3].

OPEnc is a special case of OREnc whose ciphertexts have the same order as their plaintexts, thus it

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received December 21, 2018; accepted January 22, 2019.
Corresponding Author: Kee Sung Kim (kee21@cu.ac.kr)
* School of Information Technology Engineering, Daegu Catholic University, Gyeongsan, Korea (kee21@cu.ac.kr)

J Inf Process Syst, Vol.15, No.5, pp.1211~1217, October 2019 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.03.0128 ISSN 2092-805X (Electronic)

New Construction of Order-Preserving Encryption Based on Order-Revealing Encryption

1212 | J Inf Process Syst, Vol.15, No.5, pp.1211~1217, October 2019

enables a server to get the same results as if it had operated on plaintexts without any modification on
DBMS. It has been known that any immutable ideally-secure OPEnc schemes must have the
exponentially large ciphertext space. Recently, some interactive and mutable order-preserving encryption
(or encoding) schemes with the ideal security have been proposed. Kerschbaum [1] proposed the first
frequency-hiding OPEnc scheme that randomizes the ciphertexts to hide the frequency of the underlying
plaintexts. Recently, Roche et al. [2] gave a partial order-preserving encryption (POPEnc) scheme that is
mainly for the application scenarios where a large number of insertions and a moderate number of range
queries, and achieves even stronger security compare to [1]. However, these ideally-secure OPEnc
schemes either suffer from a large round and client-side storage complexities or incomplete functionalities,
as described in Table 1.

In this work, we propose a possible answer to the following question: Is it possible to design a non-
interactive ideally-secure OPEnc with a constant-size client storage?

More specifically, we present how to improve the round and client-side storage complexities on the
exiting ideally-secure mutable order-preserving encryption protocol using the public comparison
functionality of an OREnc scheme. By composing our method with an existing OREnc scheme, we can
obtain an efficient OPEnc scheme which security is at least as strong as one of the underlying OREnc
scheme. Table 1 presents comparison our constructions based on [3-5] with the existing ideally-secure
OPEnc schemes in terms of efficiency and security. Composing with [3,4], the resulting constructions
show better efficiency both of the number of rounds and the client-side storage, but cannot guarantee the
ideal security. Note that the construction based on [5] is the first non-interactive ideally-secure OPEnc
scheme with a constant-size client storage, but it is currently impractical to implement as described
before.

Table 1. Comparison of the existing ideally-secure OPEnc schemes

Scheme
Rounds Client storage

Security Note
Insert Query Working Persistent

Previous
constructions

[1] 1 a 1 a O(n) O(n) Ideal F.H.

[2] 1 b O(1) b O(nε)
(0 < ε < 1)

O(1) Ideal F.H.
 Partial OPE

Our constructions

Based on [3] 1 1 O(1) O(1) Diff. Bit -

Based on [4] 1 1 O(1) O(1) Diff. Block -

Based on [5] 1 1 O(1) O(1) Ideal Impractical

n is the total number of encrypted data in EDB. Diff. Bit (Block) indicates the position of the first differing bit (block)
of two corresponding plaintexts. F.H. means the frequency-hiding property. Partial OPE means a sizable fraction of
ciphertexts in EDB remains incomparable.
aWorst case: O(n), bworst case: O(n1-ε).

The rest paper is organized as follows: Section 2 reviews the formal notion and security of OREnc

(OPEnc). In Section 3, we propose our new construction of OPEnc based on OREnc. In Section 4, we
analyze our construction. Section 5 concludes this paper.

Kee Sung Kim

J Inf Process Syst, Vol.15, No.5, pp.1211~1217, October 2019 | 1213

2. Preliminaries

We write λ as a security parameter. For two bit strings x, y ∈ {0,1}*, x || y denotes the concatenation of
x and y. We say that two distributions D1 and D2 are computationally indistinguishable if there is no
efficient poly-time adversary can distinguish D1 from D2 except with negligible probability.

2.1 Formal Notion of Order-Revealing Encryption

An order-revealing encryption scheme ∏OREnc consists of the following three algorithms (OREnc.Setup,
OREnc.Encrypt, OREnc.Compare) defined over a well-ordered domain D and a range R.

 OREnc.Setup(1λ) → skey : For a security parameter λ, this setup algorithm generates a secret key skey.
 OREnc.Encrypt(msg, skey) → ctx : For a secret key skey and a message msg ∈ D, this encryption

algorithm computes a ciphertext ctx ∈ R .
 OREnc.Compare(ctx1, ctx2) → b : On input two ciphertexts ctx1 and ctx2, this comparison algorithm

outputs a bit b ∈ {0, 1}. (b = 1 means msg1 < msg2)

Correctness. For a fixed security parameter λ, a given ∏OREnc is correct if for skey ← OREnc.Setup(1λ),

and any messages msg1, msg2 ∈ D (msg1 < msg2), OREnc.Compare(ctx1, ctx2) = 1 where ctx1 ←

OREnc.Encrypt(msg1, skey) and ctx2 ← OREnc.Encrypt(msg2, skey).

2.2 Formal Notion of Order-Preserving Encryption

An order-preserving encryption scheme ∏OPEnc consists of the following two algorithms (OPEnc.Setup,
OPEnc.Encrypt) defined over a well-ordered domain D and a range R.

 OPEnc.Setup(1λ) → skey : For a security parameter λ, this setup algorithm generates a secret key skey.
 OPEnc.Encrypt(msg, skey) → ctx : On input the secret key skey and a plaintext msg ∈ D, this

encryption algorithm computes a ciphertext ctx ∈ R.

Correctness. For a fixed security parameter λ, a given ∏OPEnc is correct if for skey ← OPEnc.Setup(1λ),

and any messages msg1, msg2 ∈ D (msg1 < msg2), ctx1 < ctx2 where ctx1 ← OPEnc.Encrypt(msg1, skey) and

ctx2 ← OPEnc.Encrypt(msg2, skey). Thus, OPEnc can be seen as a special case of OREnc where the
comparison algorithm output 1 if ctx1 < ctx2.

As described above, these two schemes don’t contain a decryption algorithm, but the following two
options can be applied. Note that the secret key holder can generate a ciphertext ctx of any messages he
choose, and he can also verify the output of OREnc.Compare(ctx, ctx*) where ctx* is the target ciphertext.
Thus, he can decrypt ctx* by performing the binary search. Another method which avoids the logarithmic
scale binary search overhead is combining with a CPA-secure encryption scheme, i.e., inserting an
encryption of the same message under this symmetric encryption scheme together. Note that this
additional ciphertext doesn’t reveal any information about the underlying plaintext due to the CPA
security.

New Construction of Order-Preserving Encryption Based on Order-Revealing Encryption

1214 | J Inf Process Syst, Vol.15, No.5, pp.1211~1217, October 2019

2.3 Security of OR(P)Enc

In this section, we review a simulation-based security model [3] of OREnc that precisely quantifies
what information of plaintexts is leaked as defining a leakage function. We denote an adversary and a

simulator for some q = poly(λ) by Adv = (A1,…, Aq) and Sim = (S0,…, Sq), respectively. ∏OREnc =

(OREnc.Setup, OREnc.Encrypt, OREnc.Compare) be an OREnc scheme, and Lkg(·) denotes a leakage

function of ∏OREnc. For a security parameter λ, the experiment is defined as follow:

 :஺∏(λ)ܮܣܧܴ

1. skey ← OREnc.Setup(1λ)

2. (msg1, stA) ← A1(1λ)

3. ctx1 ← OREnc.Encrypt(msg1, skey)

4. for 2 ≤ i ≤ q:

 (msgi, stA) ← Ai (stA , ctx1,…, ctxi-1)

ctxi ← OREnc.Encrypt(msgi , skey)

5. output (ctx1,…, ctxq) and stA

 :ௌ∏(λ)ܯܫܵ

1. sts ← S0 (1λ)

2. (msg1, stA) ← A1(1λ)

3. (ctx1 , sts) ← S1 (Lkg(msg1), sts)

4. for 2 ≤ i ≤ q:

 (msgi, stA) ← Ai (stA , ctx1,…, ctxi-1)

(ctxi , sts) ← Si (Lkg(msg1,…, msgi), sts)

5. output (ctx1,…, ctxq) and stA

We say that ∏OREnc is a secure with Lkg(·) if for all poly-size adversaries Adv, there exists a simulator

Sim such that the two distributions ܴܮܣܧ஺∏(λ) and ܵܯܫௌ∏(λ) are computationally indistinguishable. From

the security notion, we also say that ∏OREnc is a ideally-secure if the leakage function Lkg(·) reveals only

the relative order of the underlying plaintexts. Note that we can apply the same experiment to an OPEnc
scheme since it can be seen as a special case of OREnc.

3. Proposed Scheme

As described in Section 1, it is natural to obtain an OREnc scheme from a given OPEnc scheme since
the comparison algorithm of the OREnc scheme can simply return 1 if ctx1 < ctx2 ciphertexts of OPEnc.
The authors [3] showed how to compose an OPEnc scheme with an OREnc scheme. Their main idea is
to encrypt a message with the OPEnc scheme, then use this ciphertext as an input of the encryption
algorithm of OREnc. They also showed that the security of the resulting OREnc scheme is at least as
strong as the security of the underlying OPEnc scheme. However, there has been no generic construction
of converting an OREnc scheme into an OPEnc scheme yet. Although some previous works including [3]
suggested methods to convert their OREnc scheme into OPEnc schemes, this is not generic construction.
In this section, we propose a generic construction of an OPEnc scheme from a given ORE scheme.

For a security parameter λ, a domain D = (1,…, M), a range R = (1,…, N), and an encrypted database

EDB, we define our construction of an OPEnc scheme based on an OREnc scheme as follows (note that
OPEnc.Setup(1λ) is identically defined as OREnc.Setup(1λ) of the underlying OREnc).

Kee Sung Kim

J Inf Process Syst, Vol.15, No.5, pp.1211~1217, October 2019 | 1215

Algorithm 1. OPEnc.Encrypt
Input : a plaintext msg and a secret skey of OREnc
Output : a ciphertext c

Client :
1. The client runs ctx1 ← OREnc.Encrypt(msg, skey) and to sends ctx1 to the server.

Server :
1. If EDB = Ø, then server inserts (-1 || ·) and (N || ·) .
2. Using OREnc.Compare and ctx1, the server finds the largest ctxx = (ctxx, 0 || ctxx, 1)

and the smallest ctxy = (ctxy, 0 || ctxy, 1) such that msgx ≤ msg < msgy.
(Here, msgx and msgy denote the plaintexts of ctxx and ctxy, respectively.)

3. If msgx = msg, then the server inserts (ctxx, 0 || ctxx, 1) as an encryption c of msg.
4. Else If ctxy, 0 – ctxx, 0 = 1, the server runs Update(EDB, -1, N), and goes to Step 2.
5. Else If the server inserts c = (ctx0 || ctx1) where ctx0 = ⌈ (ctxx, 0 + ctxy, 0) / 2 ⌉.

Algorithm 2. Update
Input : sorted distinct set { (ctx1, 0 || ctx1, 1), … , (ctxn, 0 || ctxn, 1) }, a min value a and a max value b
Output : balanced sorted distinct set { (ctx’1, 0 || ctx1, 1), … , (ctx’n, 0 || ctxn, 1) }

Server :
1. Compute k ←⌈ (a + b) / 2 ⌉.
2. If n = 1, the server updates all ctx1, 0 as k.
3. If n = 2, the server updates all ctx1, 0 as k and runs Update({ (ctx2, 0 || ctx2, 1) }, k, b).
4. If n > 3, the server updates all ctxi, 0 as k where i = ۂ2/݊ہ + 1,

runs Update({ (ctx1, 0 || ctx1, 1), … , (ctxi-1, 0 || ctxi-1, 1) }, a, k) and
runs Update({ (ctxi+1, 0 || ctxi+1, 1), … , (ctxn, 0 || ctxn, 1) }, k, b).

The encryption of our construction consists of two parts ctx0 and ctx1 ciphertexts of OPEnc and OREnc,

respectively. Basically, the encoding and updating methods of ctx0 can be seen as the non-frequency
hiding construction of [1], and it has been known to be ideally-secure. Due to the order-preserving
property of ctx0, the resulting ciphertext ctx0 || ctx1 also preserves the relative order of the underlying
plaintext. More specifically, to encrypt a given message msg, a client who has a secret key generates an
encryption ctx1 of an underlying OREnc scheme, then sends it to a server. Using OREnc.Compare and ctx1,
the server can find the largest ctxx,0 and the smallest ctxy,0 as describe in Step 2. Here, (ctxx,0 + 1,…, ctxy,0 –
1) means the range in which the ctx0 can be exist. ctx0 is simply computed as the intermediate value
between ctxx,0 and ctxy,0. Note that if ciphertext space does not exist, i.e., ctxy,0 – ctxx,0 = 1, the server should
perform the above update algorithm (Algorithm 2) to reconstruct ctx0’s in EDB.

4. Analysis

In this section, we analyze our construction in terms of correctness and security.

THEOREM 1. (Correctness) Our proposed OPEnc scheme is correct if the underlying OREnc scheme is
correct.

New Construction of Order-Preserving Encryption Based on Order-Revealing Encryption

1216 | J Inf Process Syst, Vol.15, No.5, pp.1211~1217, October 2019

Proof. It is sufficient to show that the underlying OREnc is not correct if the resulting OPEnc scheme
is not correct. We assume that there exist ctxa and ctxb (ctxa > ctxb) encryptions of msga and msgb (msga <
msgb). Without loss of generality, we also assume that msga is encrypted as ctxa = (ctxa,0, ctxa,1) first. We
know that ctxa > ctxb implies ctxa,0 > ctxb,0. When ctxb,0 is generated during the OPEnc.Encrypt algorithm
where ctxb = (ctxb,0, ctxb,1), the part of determining the relative order of ctxb,0 is only the OREnc.Compare
algorithm in Step 2. As a result, it implies that the underlying OREnc scheme is not correct.

THEOREM 2. (Security) Our proposed OPEnc scheme is secure with leakage function Lkg(·) of the
underlying OREnc scheme.

Proof. We write LOPEnc(·) and LOREnc(·) to the leakage functions of our proposed OPEnc scheme and the
underlying OREnc scheme, respectively. As described before, the generation and updating methods of
ctx0 can be seen as the non-frequency hiding construction of [1], and it has been known to be ideally
secure. This means that the first part of the resulting ciphertext c0 reveals only the relative ordering of the

underlying plaintext. Therefore, a simulator Sim with LOREnc(·) who can simulates ctx1 is always able to
simulate ctx0 unless the underlying OREnc scheme provides more strong security than the ideal security.

THEOREM 3. (Efficiency) Our proposed OPEnc scheme provides a non-interactive encryption and a

range query with a constant client-side storage.

Proof. From the specification of Algorithm 1, we know that it doesn’t require any additional rounds to

encrypt data with a server. The client simply creates ctx1, then sends it to the server. The rest of the
encryption part is done by the server. Although we have not described in detail how the range query
works, it is basically done by sending two encrypted boundary points to the server. It means that range
query also does not require any additional rounds.

The client should maintain the secret key skey of the OREnc scheme to generate ctx1. Since the
computation of ctx0, which requires all of the existing ciphertext information, is performed on the server-
side, the client does not need to maintain any additional state except skey.

REMARKS 1. One of the interesting points of our proposed scheme is that the client and the server each

compute half of the ciphertext. Some sensitive readers might think that it is not natural that the server
who does not have a secret key generates the final ciphertext. However, this has no effect on functionalities
of OPEnc such as decryption and range queries, and also no effect on the security since the part of
ciphertext generated by the server is computed using only the information that has been already disclosed.

REMARKS 2. The ciphertext of our proposed OPEnc scheme consists of two ciphertexts of OPEnc and

OREnc. This means that each OPEnc and OREnc encryption algorithms have to be performed to generate
the ciphertext, thus it can be think that it requires roughly more than twice computational overhead
compared to previous works. However, we know that the client generates only half of the ciphertext, and
the server who has powerful computation power completes the encryption process, thus it is hard to say
that efficiency of our proposed scheme is worse than the existing OPEnc schemes.

Kee Sung Kim

J Inf Process Syst, Vol.15, No.5, pp.1211~1217, October 2019 | 1217

5. Conclusions

In this work, we proposed a new construction of an OPEnc scheme based on an OREnc scheme with
the optimal client storage and round complexities. The security of the resulting OPEnc scheme is at least
as strong as the underlying OREnc’s security. We also gave comparison result our construction with the
existing ideally-secure OPEnc schemes in terms of efficiency and security. Finally, from our construction,
we showed that it’s theoretically possible to construct a non-interactive ideally-secure OPEnc scheme
with a constant client-side storage.

Acknowledgement

This work was supported by research grants from Daegu Catholic University in 2019.

References

[1] F. Kerschbaum, “Frequency-hiding order-preserving encryption,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, 2015, pp. 656-667.

[2] D. S. Roche, D. Apon, S. G. Choi, and A. Yerukhimovich, “POPE: partial order preserving encoding,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 2016, pp. 1131-1142.

[3] N. Chenette, K. Lewi, S. A. Weis, and D. J. Wu, “Practical order-revealing encryption with limited leakage,”
in Fast Software Encryption. Heidelberg: Springer, 2016, pp. 474-493.

[4] K. Lewi and D. J. Wu, “Order-revealing encryption: New constructions, applications, and lower bounds,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna,
Austria, 2016, pp. 1167-1178.

[5] D. Boneh, K. Lewi, M. Raykova, A. Sahai, M. Zhandry, and J. Zimmerman, “Semantically secure order-
revealing encryption: multi-input functional encryption without obfuscation,” in Advances in Cryptology –
EUROCRYPT 2015. Heidelberg: Springer, 2015, pp. 563-594.

[6] E. Miles, A. Sahai, and M. Zhandry, “Annihilation attacks for multilinear maps: cryptanalysis of
indistinguishability obfuscation over GGH13,” in Advances in Cryptology – CRYPT 2016. Heidelberg: Springer,
2016, pp. 629-658.

[7] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehle, “Cryptanalysis of the CLT13 multilinear map,” Journal of
Cryptology, vol. 32, no. 2, pp. 547-565, 2019.

Kee Sung Kim https://orcid.org/0000-0001-9160-8692

He received M.S. and Ph.D. degrees in Graduate School of Information Security from
Korea University, Seoul, Korea, in 2011 and 2015, respectively. He is currently an
assistant professor at School of Information Technology Engineering, Daegu Catholic
University, Korea. His research interests focus on cryptography, database security,
privacy enhancing technology, and secure protocols.

