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This paper presents a practical differential fault analysis 
method for the faulty Advanced Encryption Standard 
(AES) with a reduced round by means of a semi-invasive 
fault injection. To verify our proposal, we implement the 
AES software on the ATmega128 microcontroller as 
recommended in the standard document FIPS 197. We 
reduce the number of rounds using a laser beam injection 
in the experiment. To deduce the initial round key, we 
perform an exhaustive search for possible key bytes 
associated with faulty ciphertexts. Based on the simulation 
result, our proposal extracts the AES 128-bit secret key in 
less than 10 hours with 10 pairs of plaintext and faulty 
ciphertext. 
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I. Introduction 

Many hardware implementations of cryptographic 
applications without countermeasures against physical attacks 
suffer from various physical attacks, such as side-channel 
attacks and fault attacks. Among these physical attacks, the 
differential fault analysis (DFA) attack extracts the secret key 
by analyzing the differences between correct and faulty 
ciphertexts resulting from fault injection during execution of an 
algorithm. In 1996, Biham and Shamir first introduced the 
DFA attack on an implementation of the data encryption 
standard (DES) with errors induced by fault injection [1]. 
Subsequently, many researchers have mounted DFAs on 
symmetric key encryption algorithms, such as the triple-DES 
[2], Advanced Encryption Standard (AES) [3]-[11], CLEFIA 
[12], [13], and ARIA [14]. In particular, AES has been 
considered the main target of DFAs because of its popularity, 
security, and usefulness. 

Previous DFAs for the AES algorithm can be roughly 
classified into three types according to the assumption of the 
fault model. In the first type of DFA, the intermediate state 
values of the encryption process can be corrupted by fault 
injection [3]-[6]. They use a fault propagation property in 
which the injected fault before the MixColumns operation is 
diffused by the MixColumns transformation; one erroneous 
byte affects 4 output bytes of MixColumns. As an example, 
Piret and Quisquater’s DFA needs only two faulty ciphertexts 
to extract the 128-bit AES master secret key [5]. The second 
type of DFA is based on an assumption that a fault can be 
injected during the key expansion process of the AES [7]-[10]. 
A fault injected during the key expansion process passes 
through the three transformations of the key expansion and also 
affects the encryption process after the AddRoundKey 
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transformation. Thus, modification of the fault injected in the 
key expansion and diffusion during the encryption process is 
analyzed. Recently, a DFA by Kim and Quisquater based on 
this assumption deduces the 128-bit master secret key using 
only two faulty ciphertexts [10]. The third type of DFA does 
not assume data corruption but does assume an instruction fault. 
The DFA by Choukri and Tunstall reduces the number of AES 
rounds to single round by inputting a voltage glitch on the 
chip’s source power to induce an instruction fault. However, 
their implementation of AES on the target device is a variant 
structure. The implementation of the structure is not the one 
recommended in the standard documentation FIPS 197. If a 
chip developer implements the recommended AES of FIPS 
197, then the DFA by Choukri and Tunstall does not work. 

This paper proposes a practical DFA for a faulty AES with 
a reduced round by means of a semi-invasive fault injection. 
The effectiveness of the DFA method was verified by a 
practical experiment. The AES recommended in FIPS 197 
was implemented on the target ATmega128 microcontroller. 
We reduced the number of the AES rounds by using a laser 
beam injection on the target chip surface after decapsulating. 
This is a new experimental result of a semi-invasive fault 
injection for the recommended AES. After obtaining 10 
ciphertexts from the reduced-round AES, we successfully 
extracted the 192-bit and 256-bit secret key of AES as well as 
128-bit secret key. 

II. Related Works 

1. AES Algorithm 

The AES specifies a FIPS-approved cryptographic algorithm 
that can be used to protect electronic data [15]. The AES 
algorithm is a symmetric block cipher that can encrypt 
(encipher) and decrypt (decipher) information. The AES 
algorithm is capable of using cryptographic keys of 128 bits, 
192 bits, or 256 bits to encrypt and decrypt a data block of 128 
bits. We deal with the 128-bit AES due to its widespread usage. 
The number of rounds in the 128-bit AES is 10, and the 
intermediate 16-byte values of the encryption process are 
called the state, which is usually represented by a 4×4 matrix 
for 128-bit data. 

A. AES Encryption Process 

Each round of the 128-bit AES encryption is composed of 
the following 4 transformation functions: 

• SubBytes is a nonlinear byte substitution. We denote the 
SubBytes function as SB. 

• ShiftRows is a cyclic shift operation applied to each row  

 

Fig. 1. AES encryption process. 
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using a byte with different offsets. We denote the 
ShiftRows function as SR. 

• MixColumns is a linear transformation function applied to 
each column. We denote the MixColumns function as MC. 

• AddRoundKey is a bitwise XOR operation applied to each 
128-bit round key. 

An initial AddRoundKey is required before the first round, 
and the MixColumns transformation in the last (10th) round is 
removed. Figure 1 shows the entire AES encryption process. 

B. AES Key Expansion Process 

The 128-bit AES algorithm takes the master secret key, SK, 
and performs a key expansion routine to generate 10 round 
keys. Each expanded round key consists of a linear array of  
4-byte words, denoted as W[i]. There are three transformation 
functions in the key expansion process as follows: 

• RotWord is a function that takes a word [a0, a1, a2, a3] as an 
input, performs a cyclic permutation, and returns the word 
[a1, a2, a3, a0]. 

• SubWord is a function that takes a word composed of 4 
bytes and applies the S-box to each byte. 

• Rcon[i] is a round constant word given by [xi-1,{00},{00}, 
{00}], with xi-1 representing powers of x (x is denoted as 
{02}) in the field GF(28). Note that i starts at 1, not 0. 

Figure 2 shows the AES key expansion process. RK0 is the 
initial round key identical to the master secret key and RKi is 
the i-th round key generated by the key expansion process.  
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Fig. 2. AES key expansion process. 
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2. Previous DFA for Round-Reduced AES 

In 2005, Choukri and Tunstall presented a DFA on AES by 
reducing the number of rounds using a fault injection on a 
Silvercard, which is a smart card based on PIC16F877 [11]. In 
their experiment, the fault injection method involves a glitch in 
the power supplied to the smart card. The simplest case of 
reducing the number of rounds to one was chosen to facilitate 
subsequent cryptanalysis. They implemented a slightly 
different AES algorithm from the one described in the AES 
standard document. In their AES implementation, the last 
round with a conditional branch to omit MixColumns is 
included into a “for” loop procedure for executing the AES 
rounds. Thus, their AES implementation has been reduced to 
one round by a fault and is composed of the following 5 
sequential functions: 

• AddRoundKey(); //the initial round key addition, 
• SubBytes(); //the first round SB, 
• ShiftRows(); //the first round SR, 
• MixColumns(); //the first round MC, 
• AddRoundKey(); //the first round key addition. 

The above round-reduced AES contains only two 
AddRoundKey transformation functions: the initial one and the 
first one. If an attacker inputs two plaintexts, M1 and M2,   
respectively, then he can obtain two faulty ciphertexts, C1′ and 
C2′ . To extract the initial round key RK0, an attacker checks the 
following equation per byte: 

1
1 0 2 0 1 2SB( ) SB( ) MC ( ' ').M RK M RK C C−⊕ ⊕ ⊕ = ⊕   (1) 

The ShiftRows function is not taken into account, as it is a 
byte-wise permutation. For the first round, the AddRoundKey 
is ignored as the effect of this function is removed by XORing 
the two faulty ciphertexts.  

However, Choukri and Tunstall deliberately implemented a 
128-bit AES, of which the last round is included in the “for” 
loop procedure, unlike the pseudocode in the FIPS 197 
document, to facilitate their DFA on the target. If a chip 
developer implements AES as recommended in the standard 
document, then their attack will not work. 

III. DFA Proposal for Round-Reduced AES 

We assume that an attacker can input plaintext and get the 
corresponding ciphertext during the AES encryption process. 
Furthermore, he can also reduce the number of rounds by 
injecting a fault into the target device. A DFA is usually 
composed of two sequential phases: the physical attack phase 
to obtain faulty ciphertexts and the computational analysis 
phase to extract the secret key using the faulty ciphertexts 
obtained from the physical attack phase. A detailed description 
of the physical attack phase is also given in subsection IV.1, 
and the computer simulation results will be shown in 
subsection IV.2. 

1. Proposed DFA Method 

We propose a practical DFA method using round-reduced 
AES by fault injection. Our work deals with AES software 
implemented in a cryptographic device and uses the 
pseudocode described in the standard document FIPS 197. 
Table 1 shows several of the notations used in our paper. 

Figure 3 shows the pseudocode of the AES encryption 
algorithm described in the standard document [15]. The 
important feature of the pseudocode is that the last round of 
AES was not included in the “for” loop procedure. If an 
adversary performs a fault attack on the target device 
implemented using the pseudocode in Fig. 3, the simplest case 
of reducing the number of rounds is two rounds: the first and 
last round. Since there are three AddRoundKey transformation 
functions, the analysis method by Choukri and Tunstall can no 
longer be applied. Thus, we develop a new cryptanalysis 
method of the two-round AES. 

Figure 4 shows our faulty encryption process by reducing the 
number of rounds. 

In order to deduce the initial round key, we use the pairs of 
plaintext and the faulty output of the round-reduced AES in  
Fig. 4. Based on an exhaustive search for key candidates, we 
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Table 1. Notations used in AES algorithm. 

Mi,j The j-th byte of the i-th plaintext 

Ci′ The i-th faulty ciphertext 

Ci The intermediate state of the Ci′ 

SK The master secret key 

RKi,j The j-th byte of the i-th round key 

W[i] The i-th word of key expansion result 

Si,j The i-th row and j-th column of the state 

 

 

Fig. 3. Pseudocode for 128-bit AES encryption. 

state = M 
AddRoundKey(state, &w[0]) 
for i = 1 step 1 to 9 

SubBytes(state) 
ShiftRows(state) 
MixColumns(state) 
AddRoundKey(state, &w[i*4]) 

end for 
SubBytes(state) 
ShiftRows(state) 
AddRoundKey(state, &w[40]) 

 
 

 

Fig. 4. Pseudocode for round-reduced AES encryption. 

state = M  
AddRoundKey(state, &w[0])   //the initial round key addition
SubBytes(state)              //the first round SB 
ShiftRows(state)             //the first round SR 
MixColumns(state)           //the first round MC 
AddRoundKey(state, &w[4])   //the first round key addition 
SubBytes(state)          //the last round SB  
ShiftRows(state)             //the last round SR  
AddRoundKey(state, &w[40])  //the last round key addition 
C'= state 

 
 
find several bytes of the initial round key used for the key 
expansion and encryption process of the target byte. A similar 
exhaustive analysis is repeated with the other faulty ciphertext 
pairs in order to reduce the key candidates. 

We input a plaintext M1 and obtain a faulty ciphertext C1′ that 
passed through just 2 rounds: the first and last rounds. Also, we 
obtain the other faulty ciphertext C2′ corresponding to plaintext 
M2 by the same round reduction process. Thus, C1′ and C2′ are 
described by  

1 1 0 1 10' SR(SB(MC(SR(SB( ))) )) ,C M RK RK RK= ⊕ ⊕ ⊕ (2) 

2 2 0 1 10' SR(SB(MC(SR(SB( ))) )) .C M RK RK RK= ⊕ ⊕ ⊕ (3) 

The result of XORing C1′ with C2′ is as  

 

Fig. 5. First round key bytes to compute state S0, 0 of intermediate
result C.
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1 2 1 0 1

2 0 1

1 2

' ' SR(SB(MC(SR(SB( ))) ))
                SR(SB(MC(SR(SB( ))) ))
             ,

C C M RK RK
M RK RK

C C

⊕ = ⊕ ⊕

⊕ ⊕ ⊕
= ⊕ (4)

 

where C1 and C2 are the respective intermediate values before 
AddRoundKey of the last round. As shown in (4), RK10 can be 
eliminated, and we know M1, M2, C1′, and C2′. We can generate 
C1⊕C2 using an exhaustive search for possible RK0 and RK1 
values. Since RK1 is generated from RK0, there is no reason to 
select RK1 candidates. Thus, we only need to guess the possible  
key bytes of RK0. To reduce the range of the exhaustive search, 
we sequentially recover several bytes of RK0. 

By focusing on state S0, 0 of intermediate result (C) in Fig. 5, 
we only need to consider 5 bytes of RK0. Si, j represents a single 
byte of the state array where0 , 4i j≤ < . Figure 5 explains 
why this is the case. As shown in Fig. 5, to compute S0, 0 of C, 
we need to guess 4 bytes of RK0, that is, RK0, 0, RK0, 5, RK0, 10, 
and RK0, 15, and one byte of RK1, that is, RK1, 0. RK1, 0 comes 
from RK0, 0, and RK0, 13 comes from the key expansion process. 
Thus, we can compute S0, 0 of C by guessing 5 bytes of RK0, 
that is, RK0, 0, RK0, 5, RK0, 10, RK0, 13, and RK0, 15. Because there 
are many possible candidates for the 5 bytes of RK0, we repeat 
this analysis with the other plaintext and faulty ciphertext pairs. 

Step 1. Analysis process with target S0, 0 of C. 
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The key bytes related to S0, 0 are RK0, 0, RK0, 5, RK0, 10, RK0, 15, 
and RK1, 0. In this case, we can utilize RK0, 0 and RK0, 13 instead 
of RK1, 0. The following steps are repeated until we find 5 
unique secret bytes, that is, RK0, 0, RK0, 5, RK0, 10, RK0, 13, and 
RK0, 15, in the candidate list L using several plaintext and faulty 
ciphertext pairs.  

Step 1.1) Obtain two faulty ciphertexts, C1′ and C2′, from the 
round-reduced AES with arbitrary plaintexts M1 and M2, 
respectively, using the master secret key. Initialize key 
candidate list L with 240 possible values of 5 bytes of RK0, that 
is, RK0, 0, RK0, 5, RK0, 10, RK0, 13, and RK0, 15. 

Step 1.2) To recover the 5 bytes of RK0, compute the 
following equations with the values in candidate list L. 

1
0,0 1, 0, 1,0

1, 0, 0 0,0 0,13

SB(MC(SR(SB( ))) )

SB(MC(SR(SB( ))) ( , )),
j j

j j

S M RK RK

M RK f RK RK

= ⊕ ⊕

= ⊕ ⊕

(5) 
2
0,0 2, 0, 1,0

2, 0, 0 0,0 0,13

SB(MC(SR(SB( ))) )

SB(MC(SR(SB( ))) ( , )),
j j

j j

S M RK RK

M RK f RK RK

= ⊕ ⊕

= ⊕ ⊕

(6) 
where SR(SB(Mi,j⊕RK0,j)) is the four bytes input of the 
MixColumns for i=1, 2 and j = 0, 5, 10, 15, and f0(a, b) is part 
of the key expansion function for generating RK1, 0. 

Step 1.3) Via the checking process, we update key candidate 
list L using the values satisfying (7). 

1' 2 ' 1 2
0,0 0,0 0,0 0,0 ,S S S S⊕ = ⊕            (7) 

where '
0,0
nS is the (0, 0) state of faulty ciphertext Cn′ for n = 1, 2. 

Step 1.4) Repeat step 1.2 to step 1.3 using the other plaintext 
and faulty ciphertext pairs. When there are only 5 byte values 
in the list L, these values represent the true 5 bytes of RK0. 

Step 2. Analysis process with target S0,1 of C. 
The key bytes related with S0, 1 are RK0, 4, RK0, 9, RK0, 14,  

RK0, 3, and RK1, 4. In this case, we can utilize RK1, 0 and RK0, 4 
instead of RK1, 4. Since RK1, 0 was already found in the step 1 
analysis, we perform similar processing with step 1.2 to step 
1.4 until we find 4 unique secret bytes, RK0, 3, RK0, 4, RK0, 9, and 
RK0, 14 in candidate list L with several plaintext and faulty 
ciphertext pairs. 

Step 3. Analysis process with target S0, 2 of C. 
The key bytes related with S0, 2 are RK0, 8, RK0, 13, RK0, 2,  

RK0, 7, and RK1, 8. In this case, we can utilize RK1, 4 and RK0, 8 
instead of RK1, 8. Since RK0, 13 was already found in step 1 and 
RK1, 4 in step 2, we perform similar processing with step 1.2 to 
step 1.4 until we find the 3 unique secret bytes, RK0, 2, RK0, 7, 
and RK0, 8 in candidate list L with several plaintext and faulty 
ciphertext pairs. 

Step 4. Analysis process with target S0, 3 of C. 

The key bytes related with S0, 3 are RK0, 1, RK0, 6, RK0, 11,  
RK0, 12, and RK1, 12. In this case, we can utilize RK1, 8 and RK0, 12 
instead of RK1, 12. Since RK1, 8 was already found in step 3, we 
perform similar processing with step 1.2 to step 1.4 until we 
find 4 unique secret bytes, RK0, 1, RK0, 6, RK0, 11, and RK0, 12 in 
candidate list L with several plaintext and faulty ciphertext 
pairs. 

Finally, we can deduce all 16 bytes of the master secret key 
using 10 pairs of plaintext and faulty ciphertext, in detail, there 
are 5 bytes in step 1, 4 bytes in step 2, 3 bytes in step 3, and 4 
bytes in step 4. 

2. Number of Plaintext and Faulty Ciphertext Pairs 

We simply analyze how many faulty ciphertexts are needed 
for finding the 128-bit initial round key, RK0. Our proposal 
performs an exhaustive search for the key bytes related with 
the one byte faulty ciphertext. After performing analysis to find 
candidate key bytes with only two pairs of plaintext and faulty 
ciphertext, an attacker can reduce the number of 5 bytes 
candidates of the initial round key. At each step, the attacker 
deals with at most 5 bytes of RK0 at once when checking the 
computed byte with the one target byte in the XORed result of 
two faulty ciphertexts. Thus, the number of key candidates in L 
is reduced from 240 to 232 (= 240/28) after performing step 1.1 to 
step 1.3 with two plaintext and faulty ciphertext pairs. The 
number of candidates in L is reduced to 224 after repeating the 
next iteration with the other pairs. This kind of analysis is 
expressed by  

8
8

2 2 ,
(2 )

l
l r

r
−=                 (8) 

where l is the bit length of the key bytes searched at once, and r 
is the number of iterations from step 1.2 to step 1.3. In the 
worst case, the attacker needs to guess 5 bytes at once, namely, 
l is at most 40. Thus, he must perform this analysis 5 times with 
10 pairs of plaintext and faulty ciphertext. The faulty 
ciphertexts used in step 1 can be reused for the other steps. 
Thus, the attacker can extract the 128-bit master secret key of 
the AES with just 10 pairs of plaintext and faulty ciphertext. 

3. Extension to 192-bit and 256-bit AES 

For the cases of 192-bit and 256-bit AES, we can apply our 
DFA in a similar manner of the method for the 128-bit AES. 
The number of key bytes of RK0 to guess at once is at most 5, 
and an exhaustive search of these 5 key bytes consumes most 
of the key search time. For example, for the 192-bit AES, the 
key bytes related to the state array S0, 0 are RK0, 0, RK0, 5, RK0, 10, 
RK0, 15, and RK1, 0. The key search steps are repeated until we 
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Fig. 6. Experimental setup: (a) laser for fault injection and (b)
decapsulated target chip. 

(a) 
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find 5 unique secret bytes, RK0, 0, RK0, 5, RK0, 10, RK0, 15, and RK1, 

0 in the candidate list L using several plaintext and faulty 
ciphertext pairs. To extract the master key with 10 pairs of 
plaintext and faulty ciphertext for the 192-bit AES, we need 
three exhaustive searches for 5 bytes, and one search each for  
4 bytes, 3 bytes, and 2 bytes. Thus, we can assume that the 
search time needed to extract the 192-bit (24-byte) secret key is 
about 3 times as long as that of the 128-bit AES. 

For the 256-bit AES having a 32-byte key, we need four 
exhaustive searches for 5 bytes and four searches for 3 bytes. 
With 10 pairs of plaintext and faulty ciphertext, the search time 
will be about 4 times as long as that of the 128-bit AES. 

Our cryptanalysis method of 128-bit AES can be extended to 
the 192-bit and 256-bit AES cases while we retain the basic 
analysis concept. However, since the cryptanalysis method 
proposed by Choukri and Tunstall only treats the one-round 
AES, their attack cannot be applied to the 192-bit and 256-bit 
AES cases.  

IV. Experiment of Proposed DFA and Key Search 
Simulation 

1. Fault Injection Experiment 

To implement the physical attack phase, we performed a real  

 

Fig. 7. Captured power signal of 10 round AES encryption. 

AES encryption  

 
 
experiment using a laser. Firstly, we implemented AES software 
on the ATmega128 microcontroller [16]. Our implementation 
follows the pseudocode recommended in the AES standard 
document FIPS 197. Then, we modified the number of rounds 
by injection of a fault at the “for” loop procedure in Fig. 3. The 
tool used for fault injection is the EzLaze 3 Laser, which can 
target a laser beam on the surface of the decapsulated target chip 
[17]. After several trial and error runs, we were able to obtain 10 
faulty ciphertexts from the round-reduced AES in Fig. 4. Figure 
6 shows our experimental setup. 

Compared with non-invasive fault injection methods such as 
the voltage glitches described in [11], the laser beam injection 
method is more expensive to implement. In spite of the high cost,   
the laser beam injection method provides many advantages to an 
attacker. The combination of the laser and an optical microscope 
enable to inject a laser beam to desired locations, such as RAM, 
CPU, EEPROM, and BUS. The fault injection tool can inject a 
laser beam with a 3 ns or 4 ns laser pulse, and we can control the 
time of a laser beam injection in steps of 10 ns. 

In order to reduce the number of rounds, we targeted a laser 
beam on the decapsulated target chip as shown in Fig. 6(b). In 
the experiment, we observed the power signal using a digital 
oscilloscope, and controlled several I/O signals to distinguish 
the specific operations. Figure 7 shows the captured power 
signal of the 10 round AES encryption process. 

As shown in Fig. 7, the third signal is the power 
consumption signal of the entire AES encryption process. It 
takes 7.513636 ms, as shown in the low state of the first I/O 
signal. We can distinguish each round by the second I/O signal 
of the Fig. 7. To skip the other rounds of the AES process after 
execution of the first round, we injected a laser fault at the time 
when the “for” loop procedure determines the next iteration 
after the first round. We assume that this fault can cause an 
abrupt increase of the counter index value i in Fig. 3. Another 
assumption is that a fault may influence the comparison  
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Fig. 8. Power signal of round-reduced AES encryption. 

2 round AES 

 
 

 

Fig. 9. Ciphertexts from target chip.  
 
operation of the counter index with a loop constant 9 in Fig. 3. 

In practical experiments, using a digital oscilloscope, we 
observed the power signal and the I/O signals to distinguish the 
specific operations. The operational time for the first round can 
be approximated by various methods, for example, observation 
of the power signal, one round execution time in proportion to 
the total execution time of AES encryption, and the number of 
clocks used for the assembly codes. Thus, we can guess the 
location of the comparison operation in the first round of AES. 
Subsequently, after several trial and error runs, we could inject 
a fault into the comparison operation and obtain faulty 
ciphertexts from a faulty AES with a reduced round. As a result, 
Fig. 8 shows the power signal of round-reduced AES 
encryption. It can be seen that round-reduced AES encryption 
takes about 985.72 μs. 

The peak of the fourth signal in the circled area of Fig. 8 
indicates the trigger for laser beam injection. The trigger 
resulted in a 631.60 μs delay time after starting the AES 
encryption process, and there was about 200 μs preparation 
time for the laser beam emanation. Consequently, the 
subsequent rounds after the first round of the AES encryption 
were successfully skipped as intended. Thus, we were able to 
obtain the faulty ciphertext of the round-reduced AES as  

 

Fig. 10. Key search simulation on PC.  

Table 2. Run-time of key search. 

Step Run-time (s) 

Step 1 
(exhaustive search for 5 bytes) 

≈34,560  

Step 2 
(exhaustive search for 4 bytes) 

≈960  

Step 3 
(exhaustive search for 3 bytes) 

≈3.7  

Step 4 
(exhaustive search for 4 bytes) 

≈960  

 

shown in Fig. 9. 
In Fig. 9, “39 25 ... 0B 32” is the correct ciphertext of the 

128-bit AES with input “32 43 F6 A8 88 5A 30 8D 31 31 98 
A2 E0 37 07 34” and the master secret key “2B 7E 15 16 28 
AE D2 A6 AB F7 15 88 09 CF 4F 3C” in hexadecimal form. 
To show the correctness of implementation, we use example 
input and key given in FIPS 197. However, “BB 19 ... 60 65” 
is the faulty ciphertext, which is the output of only two AES 
rounds: the first and last round. 

2. Key Search by Computer Analysis 

The second phase of DFA is a computational analysis to 
extract the secret key using faulty ciphertexts. We tried to 
extract the master secret key on a PC with an i3-530 3.0 GHz 
CPU with 2 GB memory using Visual C++ software. Figure 
10 shows the simulation result of each step in subsection III.1 
when 10 pairs of plaintext and faulty ciphertext are used. As 
shown in Fig. 10, we successfully retrieved the key bytes at 
each step. Thus, we were able to find the 128-bit secret key 
after performing 4 steps. The average run-time of the key 
search at each step is shown in Table 2. 

V. Conclusion 

We presented a practical DFA for a faulty AES with a 
reduced round by means of a semi-invasive fault injection. To 
extract the secret key of AES, we made candidates of possible 
key bytes and then reduced the number of candidates using the 
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pairs of plaintext and faulty ciphertext obtained from the 
round-reduced AES. To verify the DFA method, we conducted 
an experiment on the target chip. We implemented the software 
AES recommended in FIPS 197 on the ATmega128 
microcontroller and injected a laser beam during the execution 
of AES to obtain faulty ciphertexts with the reduced number of 
round. After obtaining 10 ciphertexts from the reduced-round 
AES, we successfully extracted 128-bit AES secret key. Our 
DFA method can be applied to 192-bit AES and 256-bit AES, 
and the experimental result is a new one with a semi-invasive 
fault injection for the recommended AES. Thus, chip 
developers implementing AES need particular carefulness and 
vigilance against the fault injection attacks. 
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