
434 JeaHoon Park et al. © 2011 ETRI Journal, Volume 33, Number 3, June 2011

This paper presents a practical differential fault analysis
method for the faulty Advanced Encryption Standard
(AES) with a reduced round by means of a semi-invasive
fault injection. To verify our proposal, we implement the
AES software on the ATmega128 microcontroller as
recommended in the standard document FIPS 197. We
reduce the number of rounds using a laser beam injection
in the experiment. To deduce the initial round key, we
perform an exhaustive search for possible key bytes
associated with faulty ciphertexts. Based on the simulation
result, our proposal extracts the AES 128-bit secret key in
less than 10 hours with 10 pairs of plaintext and faulty
ciphertext.

Keywords: AES, fault attack, differential fault attack.

Manuscript received Aug. 11, 2010; revised Oct. 14, 2010; accepted Nov. 18, 2010.
This work was supported by SCARF project which is the IT R&D program of MKE/KEIT,

Rep. of Korea (KI002066, Development of the Technology of Side Channel Attack
Countermeasure Primitives and Security Validation).

JeaHoon Park (phone: +82 53 940 8817, email: jenoon65@ee.knu.ac.kr) is with the
Graduate School of Electrical Engineering and Computer Science, Kyungpook National
University, Daegu, Rep. of Korea.

SangJae Moon (email: sjmoon@ee.knu.ac.kr) is with the School of Electronics Engineering,
Kyungpook National University, Daegu, Rep. of Korea.

DooHo Choi (email: dhchoi @etri.re.kr) and YouSung Kang (email: youskang@etri.re.kr)
are with the Software Research Laboratory, ETRI, Daejeon, Rep. of Korea.

JaeCheol Ha (corresponding author, email: jcha@hoseo.edu) is with the Department of
Information Security, Hoseo University, Asan, Choongnam, Rep. of Korea.

doi:10.4218/etrij.11.0110.0478

I. Introduction

Many hardware implementations of cryptographic
applications without countermeasures against physical attacks
suffer from various physical attacks, such as side-channel
attacks and fault attacks. Among these physical attacks, the
differential fault analysis (DFA) attack extracts the secret key
by analyzing the differences between correct and faulty
ciphertexts resulting from fault injection during execution of an
algorithm. In 1996, Biham and Shamir first introduced the
DFA attack on an implementation of the data encryption
standard (DES) with errors induced by fault injection [1].
Subsequently, many researchers have mounted DFAs on
symmetric key encryption algorithms, such as the triple-DES
[2], Advanced Encryption Standard (AES) [3]-[11], CLEFIA
[12], [13], and ARIA [14]. In particular, AES has been
considered the main target of DFAs because of its popularity,
security, and usefulness.

Previous DFAs for the AES algorithm can be roughly
classified into three types according to the assumption of the
fault model. In the first type of DFA, the intermediate state
values of the encryption process can be corrupted by fault
injection [3]-[6]. They use a fault propagation property in
which the injected fault before the MixColumns operation is
diffused by the MixColumns transformation; one erroneous
byte affects 4 output bytes of MixColumns. As an example,
Piret and Quisquater’s DFA needs only two faulty ciphertexts
to extract the 128-bit AES master secret key [5]. The second
type of DFA is based on an assumption that a fault can be
injected during the key expansion process of the AES [7]-[10].
A fault injected during the key expansion process passes
through the three transformations of the key expansion and also
affects the encryption process after the AddRoundKey

Differential Fault Analysis for Round-Reduced
 AES by Fault Injection

 JeaHoon Park, SangJae Moon, DooHo Choi, YouSung Kang, and JaeCheol Ha

ETRI Journal, Volume 33, Number 3, June 2011 JeaHoon Park et al. 435

transformation. Thus, modification of the fault injected in the
key expansion and diffusion during the encryption process is
analyzed. Recently, a DFA by Kim and Quisquater based on
this assumption deduces the 128-bit master secret key using
only two faulty ciphertexts [10]. The third type of DFA does
not assume data corruption but does assume an instruction fault.
The DFA by Choukri and Tunstall reduces the number of AES
rounds to single round by inputting a voltage glitch on the
chip’s source power to induce an instruction fault. However,
their implementation of AES on the target device is a variant
structure. The implementation of the structure is not the one
recommended in the standard documentation FIPS 197. If a
chip developer implements the recommended AES of FIPS
197, then the DFA by Choukri and Tunstall does not work.

This paper proposes a practical DFA for a faulty AES with
a reduced round by means of a semi-invasive fault injection.
The effectiveness of the DFA method was verified by a
practical experiment. The AES recommended in FIPS 197
was implemented on the target ATmega128 microcontroller.
We reduced the number of the AES rounds by using a laser
beam injection on the target chip surface after decapsulating.
This is a new experimental result of a semi-invasive fault
injection for the recommended AES. After obtaining 10
ciphertexts from the reduced-round AES, we successfully
extracted the 192-bit and 256-bit secret key of AES as well as
128-bit secret key.

II. Related Works

1. AES Algorithm

The AES specifies a FIPS-approved cryptographic algorithm
that can be used to protect electronic data [15]. The AES
algorithm is a symmetric block cipher that can encrypt
(encipher) and decrypt (decipher) information. The AES
algorithm is capable of using cryptographic keys of 128 bits,
192 bits, or 256 bits to encrypt and decrypt a data block of 128
bits. We deal with the 128-bit AES due to its widespread usage.
The number of rounds in the 128-bit AES is 10, and the
intermediate 16-byte values of the encryption process are
called the state, which is usually represented by a 4×4 matrix
for 128-bit data.

A. AES Encryption Process

Each round of the 128-bit AES encryption is composed of
the following 4 transformation functions:

• SubBytes is a nonlinear byte substitution. We denote the
SubBytes function as SB.

• ShiftRows is a cyclic shift operation applied to each row

Fig. 1. AES encryption process.

Plaintext (M)

AddRoundKey

SubBytes

ShiftRows

MixColumns

AddRoundKey

SubBytes

ShiftRows

AddRoundKey

R
ou

nd
 1

0
R

ou
nd

 1

Master secret key

W[0,3]

Expand key

W[4,7]

W[40,43]

Ciphertext (C)

using a byte with different offsets. We denote the
ShiftRows function as SR.

• MixColumns is a linear transformation function applied to
each column. We denote the MixColumns function as MC.

• AddRoundKey is a bitwise XOR operation applied to each
128-bit round key.

An initial AddRoundKey is required before the first round,
and the MixColumns transformation in the last (10th) round is
removed. Figure 1 shows the entire AES encryption process.

B. AES Key Expansion Process

The 128-bit AES algorithm takes the master secret key, SK,
and performs a key expansion routine to generate 10 round
keys. Each expanded round key consists of a linear array of
4-byte words, denoted as W[i]. There are three transformation
functions in the key expansion process as follows:

• RotWord is a function that takes a word [a0, a1, a2, a3] as an
input, performs a cyclic permutation, and returns the word
[a1, a2, a3, a0].

• SubWord is a function that takes a word composed of 4
bytes and applies the S-box to each byte.

• Rcon[i] is a round constant word given by [xi-1,{00},{00},
{00}], with xi-1 representing powers of x (x is denoted as
{02}) in the field GF(28). Note that i starts at 1, not 0.

Figure 2 shows the AES key expansion process. RK0 is the
initial round key identical to the master secret key and RKi is
the i-th round key generated by the key expansion process.

436 JeaHoon Park et al. ETRI Journal, Volume 33, Number 3, June 2011

Fig. 2. AES key expansion process.

SK0 SK4 SK8 SK12

SK1 SK5 SK9 SK13

SK2 SK6 SK10 SK14

SK3 SK7 SK11 SK15

W[0] W[1] W[2] W[3]

W[4] W[5] W[6] W[7]

RotWord

SubWord

Rcon[i]

Master
secret key

RK0

RK1

2. Previous DFA for Round-Reduced AES

In 2005, Choukri and Tunstall presented a DFA on AES by
reducing the number of rounds using a fault injection on a
Silvercard, which is a smart card based on PIC16F877 [11]. In
their experiment, the fault injection method involves a glitch in
the power supplied to the smart card. The simplest case of
reducing the number of rounds to one was chosen to facilitate
subsequent cryptanalysis. They implemented a slightly
different AES algorithm from the one described in the AES
standard document. In their AES implementation, the last
round with a conditional branch to omit MixColumns is
included into a “for” loop procedure for executing the AES
rounds. Thus, their AES implementation has been reduced to
one round by a fault and is composed of the following 5
sequential functions:

• AddRoundKey(); //the initial round key addition,
• SubBytes(); //the first round SB,
• ShiftRows(); //the first round SR,
• MixColumns(); //the first round MC,
• AddRoundKey(); //the first round key addition.

The above round-reduced AES contains only two
AddRoundKey transformation functions: the initial one and the
first one. If an attacker inputs two plaintexts, M1 and M2,
respectively, then he can obtain two faulty ciphertexts, C1′ and
C2′ . To extract the initial round key RK0, an attacker checks the
following equation per byte:

1
1 0 2 0 1 2SB() SB() MC (' ').M RK M RK C C−⊕ ⊕ ⊕ = ⊕ (1)

The ShiftRows function is not taken into account, as it is a
byte-wise permutation. For the first round, the AddRoundKey
is ignored as the effect of this function is removed by XORing
the two faulty ciphertexts.

However, Choukri and Tunstall deliberately implemented a
128-bit AES, of which the last round is included in the “for”
loop procedure, unlike the pseudocode in the FIPS 197
document, to facilitate their DFA on the target. If a chip
developer implements AES as recommended in the standard
document, then their attack will not work.

III. DFA Proposal for Round-Reduced AES

We assume that an attacker can input plaintext and get the
corresponding ciphertext during the AES encryption process.
Furthermore, he can also reduce the number of rounds by
injecting a fault into the target device. A DFA is usually
composed of two sequential phases: the physical attack phase
to obtain faulty ciphertexts and the computational analysis
phase to extract the secret key using the faulty ciphertexts
obtained from the physical attack phase. A detailed description
of the physical attack phase is also given in subsection IV.1,
and the computer simulation results will be shown in
subsection IV.2.

1. Proposed DFA Method

We propose a practical DFA method using round-reduced
AES by fault injection. Our work deals with AES software
implemented in a cryptographic device and uses the
pseudocode described in the standard document FIPS 197.
Table 1 shows several of the notations used in our paper.

Figure 3 shows the pseudocode of the AES encryption
algorithm described in the standard document [15]. The
important feature of the pseudocode is that the last round of
AES was not included in the “for” loop procedure. If an
adversary performs a fault attack on the target device
implemented using the pseudocode in Fig. 3, the simplest case
of reducing the number of rounds is two rounds: the first and
last round. Since there are three AddRoundKey transformation
functions, the analysis method by Choukri and Tunstall can no
longer be applied. Thus, we develop a new cryptanalysis
method of the two-round AES.

Figure 4 shows our faulty encryption process by reducing the
number of rounds.

In order to deduce the initial round key, we use the pairs of
plaintext and the faulty output of the round-reduced AES in
Fig. 4. Based on an exhaustive search for key candidates, we

ETRI Journal, Volume 33, Number 3, June 2011 JeaHoon Park et al. 437

Table 1. Notations used in AES algorithm.

Mi,j The j-th byte of the i-th plaintext

Ci′ The i-th faulty ciphertext

Ci The intermediate state of the Ci′

SK The master secret key

RKi,j The j-th byte of the i-th round key

W[i] The i-th word of key expansion result

Si,j The i-th row and j-th column of the state

Fig. 3. Pseudocode for 128-bit AES encryption.

state = M
AddRoundKey(state, &w[0])
for i = 1 step 1 to 9

SubBytes(state)
ShiftRows(state)
MixColumns(state)
AddRoundKey(state, &w[i*4])

end for
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, &w[40])

Fig. 4. Pseudocode for round-reduced AES encryption.

state = M
AddRoundKey(state, &w[0]) //the initial round key addition
SubBytes(state) //the first round SB
ShiftRows(state) //the first round SR
MixColumns(state) //the first round MC
AddRoundKey(state, &w[4]) //the first round key addition
SubBytes(state) //the last round SB
ShiftRows(state) //the last round SR
AddRoundKey(state, &w[40]) //the last round key addition
C'= state

find several bytes of the initial round key used for the key
expansion and encryption process of the target byte. A similar
exhaustive analysis is repeated with the other faulty ciphertext
pairs in order to reduce the key candidates.

We input a plaintext M1 and obtain a faulty ciphertext C1′ that
passed through just 2 rounds: the first and last rounds. Also, we
obtain the other faulty ciphertext C2′ corresponding to plaintext
M2 by the same round reduction process. Thus, C1′ and C2′ are
described by

1 1 0 1 10' SR(SB(MC(SR(SB())))) ,C M RK RK RK= ⊕ ⊕ ⊕ (2)

2 2 0 1 10' SR(SB(MC(SR(SB())))) .C M RK RK RK= ⊕ ⊕ ⊕ (3)

The result of XORing C1′ with C2′ is as

Fig. 5. First round key bytes to compute state S0, 0 of intermediate
result C.

RK0,0 RK0,4 RK0,8 RK0,12

RK0,1 RK0,5 RK0,9 RK0,13

RK0,2 RK0,6 RK0,10 RK0,14

RK0,3 RK0,7 RK0,11 RK0,15

RotWord

SubWord

Rcon[i]

Intermediate result (C)

RK0

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

RK1,0 RK1,4 RK1,8 RK1,12

RK1,1 RK1,5 RK1,9 RK1,13

RK1,2 RK1,6 RK1,10 RK1,14

RK1,3 RK1,7 RK1,11 RK1,15

W[4] W[5] W[6] W[7]

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

S0,0 S0,1 S0,2 S0,3

S1,0 S1,1 S1,2 S1,3

S2,0 S2,1 S2,2 S2,3

S3,0 S3,1 S3,2 S3,3

RK1

AddRoundKey
SubBytes
ShiftRows

MixColumns

Addroundkey
SubBytes
ShiftRows

W[0] W[1] W[2] W[3]

Plaintext (M)

1 2 1 0 1

2 0 1

1 2

' ' SR(SB(MC(SR(SB()))))
 SR(SB(MC(SR(SB()))))
 ,

C C M RK RK
M RK RK

C C

⊕ = ⊕ ⊕

⊕ ⊕ ⊕
= ⊕ (4)

where C1 and C2 are the respective intermediate values before
AddRoundKey of the last round. As shown in (4), RK10 can be
eliminated, and we know M1, M2, C1′, and C2′. We can generate
C1⊕C2 using an exhaustive search for possible RK0 and RK1
values. Since RK1 is generated from RK0, there is no reason to
select RK1 candidates. Thus, we only need to guess the possible
key bytes of RK0. To reduce the range of the exhaustive search,
we sequentially recover several bytes of RK0.

By focusing on state S0, 0 of intermediate result (C) in Fig. 5,
we only need to consider 5 bytes of RK0. Si, j represents a single
byte of the state array where0 , 4i j≤ < . Figure 5 explains
why this is the case. As shown in Fig. 5, to compute S0, 0 of C,
we need to guess 4 bytes of RK0, that is, RK0, 0, RK0, 5, RK0, 10,
and RK0, 15, and one byte of RK1, that is, RK1, 0. RK1, 0 comes
from RK0, 0, and RK0, 13 comes from the key expansion process.
Thus, we can compute S0, 0 of C by guessing 5 bytes of RK0,
that is, RK0, 0, RK0, 5, RK0, 10, RK0, 13, and RK0, 15. Because there
are many possible candidates for the 5 bytes of RK0, we repeat
this analysis with the other plaintext and faulty ciphertext pairs.

Step 1. Analysis process with target S0, 0 of C.

438 JeaHoon Park et al. ETRI Journal, Volume 33, Number 3, June 2011

The key bytes related to S0, 0 are RK0, 0, RK0, 5, RK0, 10, RK0, 15,
and RK1, 0. In this case, we can utilize RK0, 0 and RK0, 13 instead
of RK1, 0. The following steps are repeated until we find 5
unique secret bytes, that is, RK0, 0, RK0, 5, RK0, 10, RK0, 13, and
RK0, 15, in the candidate list L using several plaintext and faulty
ciphertext pairs.

Step 1.1) Obtain two faulty ciphertexts, C1′ and C2′, from the
round-reduced AES with arbitrary plaintexts M1 and M2,
respectively, using the master secret key. Initialize key
candidate list L with 240 possible values of 5 bytes of RK0, that
is, RK0, 0, RK0, 5, RK0, 10, RK0, 13, and RK0, 15.

Step 1.2) To recover the 5 bytes of RK0, compute the
following equations with the values in candidate list L.

1
0,0 1, 0, 1,0

1, 0, 0 0,0 0,13

SB(MC(SR(SB())))

SB(MC(SR(SB())) (,)),
j j

j j

S M RK RK

M RK f RK RK

= ⊕ ⊕

= ⊕ ⊕

(5)
2
0,0 2, 0, 1,0

2, 0, 0 0,0 0,13

SB(MC(SR(SB())))

SB(MC(SR(SB())) (,)),
j j

j j

S M RK RK

M RK f RK RK

= ⊕ ⊕

= ⊕ ⊕

(6)
where SR(SB(Mi,j⊕RK0,j)) is the four bytes input of the
MixColumns for i=1, 2 and j = 0, 5, 10, 15, and f0(a, b) is part
of the key expansion function for generating RK1, 0.

Step 1.3) Via the checking process, we update key candidate
list L using the values satisfying (7).

1' 2 ' 1 2
0,0 0,0 0,0 0,0 ,S S S S⊕ = ⊕ (7)

where '
0,0
nS is the (0, 0) state of faulty ciphertext Cn′ for n = 1, 2.

Step 1.4) Repeat step 1.2 to step 1.3 using the other plaintext
and faulty ciphertext pairs. When there are only 5 byte values
in the list L, these values represent the true 5 bytes of RK0.

Step 2. Analysis process with target S0,1 of C.
The key bytes related with S0, 1 are RK0, 4, RK0, 9, RK0, 14,

RK0, 3, and RK1, 4. In this case, we can utilize RK1, 0 and RK0, 4
instead of RK1, 4. Since RK1, 0 was already found in the step 1
analysis, we perform similar processing with step 1.2 to step
1.4 until we find 4 unique secret bytes, RK0, 3, RK0, 4, RK0, 9, and
RK0, 14 in candidate list L with several plaintext and faulty
ciphertext pairs.

Step 3. Analysis process with target S0, 2 of C.
The key bytes related with S0, 2 are RK0, 8, RK0, 13, RK0, 2,

RK0, 7, and RK1, 8. In this case, we can utilize RK1, 4 and RK0, 8
instead of RK1, 8. Since RK0, 13 was already found in step 1 and
RK1, 4 in step 2, we perform similar processing with step 1.2 to
step 1.4 until we find the 3 unique secret bytes, RK0, 2, RK0, 7,
and RK0, 8 in candidate list L with several plaintext and faulty
ciphertext pairs.

Step 4. Analysis process with target S0, 3 of C.

The key bytes related with S0, 3 are RK0, 1, RK0, 6, RK0, 11,
RK0, 12, and RK1, 12. In this case, we can utilize RK1, 8 and RK0, 12
instead of RK1, 12. Since RK1, 8 was already found in step 3, we
perform similar processing with step 1.2 to step 1.4 until we
find 4 unique secret bytes, RK0, 1, RK0, 6, RK0, 11, and RK0, 12 in
candidate list L with several plaintext and faulty ciphertext
pairs.

Finally, we can deduce all 16 bytes of the master secret key
using 10 pairs of plaintext and faulty ciphertext, in detail, there
are 5 bytes in step 1, 4 bytes in step 2, 3 bytes in step 3, and 4
bytes in step 4.

2. Number of Plaintext and Faulty Ciphertext Pairs

We simply analyze how many faulty ciphertexts are needed
for finding the 128-bit initial round key, RK0. Our proposal
performs an exhaustive search for the key bytes related with
the one byte faulty ciphertext. After performing analysis to find
candidate key bytes with only two pairs of plaintext and faulty
ciphertext, an attacker can reduce the number of 5 bytes
candidates of the initial round key. At each step, the attacker
deals with at most 5 bytes of RK0 at once when checking the
computed byte with the one target byte in the XORed result of
two faulty ciphertexts. Thus, the number of key candidates in L
is reduced from 240 to 232 (= 240/28) after performing step 1.1 to
step 1.3 with two plaintext and faulty ciphertext pairs. The
number of candidates in L is reduced to 224 after repeating the
next iteration with the other pairs. This kind of analysis is
expressed by

8
8

2 2 ,
(2)

l
l r

r
−= (8)

where l is the bit length of the key bytes searched at once, and r
is the number of iterations from step 1.2 to step 1.3. In the
worst case, the attacker needs to guess 5 bytes at once, namely,
l is at most 40. Thus, he must perform this analysis 5 times with
10 pairs of plaintext and faulty ciphertext. The faulty
ciphertexts used in step 1 can be reused for the other steps.
Thus, the attacker can extract the 128-bit master secret key of
the AES with just 10 pairs of plaintext and faulty ciphertext.

3. Extension to 192-bit and 256-bit AES

For the cases of 192-bit and 256-bit AES, we can apply our
DFA in a similar manner of the method for the 128-bit AES.
The number of key bytes of RK0 to guess at once is at most 5,
and an exhaustive search of these 5 key bytes consumes most
of the key search time. For example, for the 192-bit AES, the
key bytes related to the state array S0, 0 are RK0, 0, RK0, 5, RK0, 10,
RK0, 15, and RK1, 0. The key search steps are repeated until we

ETRI Journal, Volume 33, Number 3, June 2011 JeaHoon Park et al. 439

Fig. 6. Experimental setup: (a) laser for fault injection and (b)
decapsulated target chip.

(a)

(b)

find 5 unique secret bytes, RK0, 0, RK0, 5, RK0, 10, RK0, 15, and RK1,

0 in the candidate list L using several plaintext and faulty
ciphertext pairs. To extract the master key with 10 pairs of
plaintext and faulty ciphertext for the 192-bit AES, we need
three exhaustive searches for 5 bytes, and one search each for
4 bytes, 3 bytes, and 2 bytes. Thus, we can assume that the
search time needed to extract the 192-bit (24-byte) secret key is
about 3 times as long as that of the 128-bit AES.

For the 256-bit AES having a 32-byte key, we need four
exhaustive searches for 5 bytes and four searches for 3 bytes.
With 10 pairs of plaintext and faulty ciphertext, the search time
will be about 4 times as long as that of the 128-bit AES.

Our cryptanalysis method of 128-bit AES can be extended to
the 192-bit and 256-bit AES cases while we retain the basic
analysis concept. However, since the cryptanalysis method
proposed by Choukri and Tunstall only treats the one-round
AES, their attack cannot be applied to the 192-bit and 256-bit
AES cases.

IV. Experiment of Proposed DFA and Key Search
Simulation

1. Fault Injection Experiment

To implement the physical attack phase, we performed a real

Fig. 7. Captured power signal of 10 round AES encryption.

AES encryption

experiment using a laser. Firstly, we implemented AES software
on the ATmega128 microcontroller [16]. Our implementation
follows the pseudocode recommended in the AES standard
document FIPS 197. Then, we modified the number of rounds
by injection of a fault at the “for” loop procedure in Fig. 3. The
tool used for fault injection is the EzLaze 3 Laser, which can
target a laser beam on the surface of the decapsulated target chip
[17]. After several trial and error runs, we were able to obtain 10
faulty ciphertexts from the round-reduced AES in Fig. 4. Figure
6 shows our experimental setup.

Compared with non-invasive fault injection methods such as
the voltage glitches described in [11], the laser beam injection
method is more expensive to implement. In spite of the high cost,
the laser beam injection method provides many advantages to an
attacker. The combination of the laser and an optical microscope
enable to inject a laser beam to desired locations, such as RAM,
CPU, EEPROM, and BUS. The fault injection tool can inject a
laser beam with a 3 ns or 4 ns laser pulse, and we can control the
time of a laser beam injection in steps of 10 ns.

In order to reduce the number of rounds, we targeted a laser
beam on the decapsulated target chip as shown in Fig. 6(b). In
the experiment, we observed the power signal using a digital
oscilloscope, and controlled several I/O signals to distinguish
the specific operations. Figure 7 shows the captured power
signal of the 10 round AES encryption process.

As shown in Fig. 7, the third signal is the power
consumption signal of the entire AES encryption process. It
takes 7.513636 ms, as shown in the low state of the first I/O
signal. We can distinguish each round by the second I/O signal
of the Fig. 7. To skip the other rounds of the AES process after
execution of the first round, we injected a laser fault at the time
when the “for” loop procedure determines the next iteration
after the first round. We assume that this fault can cause an
abrupt increase of the counter index value i in Fig. 3. Another
assumption is that a fault may influence the comparison

440 JeaHoon Park et al. ETRI Journal, Volume 33, Number 3, June 2011

Fig. 8. Power signal of round-reduced AES encryption.

2 round AES

Fig. 9. Ciphertexts from target chip.

operation of the counter index with a loop constant 9 in Fig. 3.

In practical experiments, using a digital oscilloscope, we
observed the power signal and the I/O signals to distinguish the
specific operations. The operational time for the first round can
be approximated by various methods, for example, observation
of the power signal, one round execution time in proportion to
the total execution time of AES encryption, and the number of
clocks used for the assembly codes. Thus, we can guess the
location of the comparison operation in the first round of AES.
Subsequently, after several trial and error runs, we could inject
a fault into the comparison operation and obtain faulty
ciphertexts from a faulty AES with a reduced round. As a result,
Fig. 8 shows the power signal of round-reduced AES
encryption. It can be seen that round-reduced AES encryption
takes about 985.72 μs.

The peak of the fourth signal in the circled area of Fig. 8
indicates the trigger for laser beam injection. The trigger
resulted in a 631.60 μs delay time after starting the AES
encryption process, and there was about 200 μs preparation
time for the laser beam emanation. Consequently, the
subsequent rounds after the first round of the AES encryption
were successfully skipped as intended. Thus, we were able to
obtain the faulty ciphertext of the round-reduced AES as

Fig. 10. Key search simulation on PC.

Table 2. Run-time of key search.

Step Run-time (s)

Step 1
(exhaustive search for 5 bytes)

≈34,560

Step 2
(exhaustive search for 4 bytes)

≈960

Step 3
(exhaustive search for 3 bytes)

≈3.7

Step 4
(exhaustive search for 4 bytes)

≈960

shown in Fig. 9.
In Fig. 9, “39 25 ... 0B 32” is the correct ciphertext of the

128-bit AES with input “32 43 F6 A8 88 5A 30 8D 31 31 98
A2 E0 37 07 34” and the master secret key “2B 7E 15 16 28
AE D2 A6 AB F7 15 88 09 CF 4F 3C” in hexadecimal form.
To show the correctness of implementation, we use example
input and key given in FIPS 197. However, “BB 19 ... 60 65”
is the faulty ciphertext, which is the output of only two AES
rounds: the first and last round.

2. Key Search by Computer Analysis

The second phase of DFA is a computational analysis to
extract the secret key using faulty ciphertexts. We tried to
extract the master secret key on a PC with an i3-530 3.0 GHz
CPU with 2 GB memory using Visual C++ software. Figure
10 shows the simulation result of each step in subsection III.1
when 10 pairs of plaintext and faulty ciphertext are used. As
shown in Fig. 10, we successfully retrieved the key bytes at
each step. Thus, we were able to find the 128-bit secret key
after performing 4 steps. The average run-time of the key
search at each step is shown in Table 2.

V. Conclusion

We presented a practical DFA for a faulty AES with a
reduced round by means of a semi-invasive fault injection. To
extract the secret key of AES, we made candidates of possible
key bytes and then reduced the number of candidates using the

ETRI Journal, Volume 33, Number 3, June 2011 JeaHoon Park et al. 441

pairs of plaintext and faulty ciphertext obtained from the
round-reduced AES. To verify the DFA method, we conducted
an experiment on the target chip. We implemented the software
AES recommended in FIPS 197 on the ATmega128
microcontroller and injected a laser beam during the execution
of AES to obtain faulty ciphertexts with the reduced number of
round. After obtaining 10 ciphertexts from the reduced-round
AES, we successfully extracted 128-bit AES secret key. Our
DFA method can be applied to 192-bit AES and 256-bit AES,
and the experimental result is a new one with a semi-invasive
fault injection for the recommended AES. Thus, chip
developers implementing AES need particular carefulness and
vigilance against the fault injection attacks.

References

[1] E. Biham and A. Shamir, “Differential Fault Analysis of Secret
Key Cryptosystems,” Proc. CRYPTO, LNCS, vol. 1294, 1997, pp.
513-525.

[2] L. Hemme, “A Differential Fault Analysis Against Early Rounds
of (Triple-) DES,” Proc. CHES, LNCS, vol. 3156, 2004, pp. 254-
267.

[3] J. BlÄomer and J. Seifert, “Fault Based Cryptanalysis of the
Advanced Encryption Standard (AES),” Proc. FC, LNCS, vol.
2742, 2003, pp. 162-181.

[4] P. Dusart, G. Letourneux, and O. Vivolo, “Differential Fault
Analysis on AES,” Proc. ACNS, LNCS, vol. 2846, 2003, pp. 293-
306.

[5] G. Piret and J. Quisquater, “A Differential Fault Attack Technique
against SPN Structures, with Application to the AES and
KHAZAD,” Proc. CHES, LNCS, vol. 2779, 2003, pp. 77-88.

[6] A. Moradi, M. Shalmani, and M. Salmasizadeh, “A Generalized
Method of Differential Fault Attack against AES Cryptosystem,”
Proc. CHES, LNCS, vol. 4249, 2006, pp. 91-100.

[7] C. Chen and S. Yen, “Differential Fault Analysis on AES Key
Schedule and Some Countermeasures,” Proc. ACISP’03, LNCS,
vol. 2727, 2003, pp. 118-129.

[8] C. Giraud, “DFA on AES,” Proc. AES, LNCS, vol. 3373, 2005,
pp. 27-41.

[9] J. Takahashi, T. Fikunaga, and K. Yamakoshi, “DFA Mechanism
on the AES Key Schedule,” Proc. FDTC, 2007, pp. 62-72.

[10] C. Kim and J. Quisquater, “New Differential Fault Analysis on
AES Key Schedule: Two Faults Are Enough,” Proc. CARDIS,
LNCS, vol. 5189, 2008, pp. 48-60.

[11] H. Choukri and M. Tunstall, “Round Reduction Using Faults,”
Proc. FDTC, 2005, pp.13-24.

[12] H. Chen, W. Wu, and D. Feng, “Differential Fault Analysis on
CLEFIA,” Proc. ICICS, LNCS, vol. 4861, 2007, pp. 284-295.

[13] T. Shirai et al., “The 128-Bit Block Cipher CLEFIA (Extended
Abstract),” Proc. FSE, LNCS, vol. 4953, 2007, pp. 181-195.

[14] W. Li, D. Gu, and J. Li, “Differential Fault Analysis on the ARIA
Algorithm,” Information Sciences, Elsevier, vol. 178, no. 19, Oct.
2008, pp. 3727-3737.

[15] NIST, “Announcing the Advanced Encryption Standard,” FIPS 197,
2001. http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

[16] Atmel Corp. Available: http://www.atmel.com/dyn/resources/
prod documents/doc2467.pdf

[17] New Wave Research Available: http://www.new-wave.com/
1nwrProducts/EZLaze3.htm

JeaHoon Park received the BE and ME in
electronics engineering from Kyungpook
National University, Rep. of Korea, in 2004 and
2006, respectively. He is currently working
toward the PhD at Kyungpook National
University. His research interests include side-
channel analysis and information security.

SangJae Moon received the BE and ME in
electronics from Seoul National University, Rep.
of Korea, in 1972 and 1974, respectively. He
received the PhD in communication
engineering from the University of California,
Los Angeles, USA, in 1984. He is currently a
professor with the School of Electronics

Engineering, Kyungpook National University, Rep. of Korea. Since
2000, he has been the director of the Mobile Network Security
Technology Research Center. He is also the honorary president of the
Korea Institute of Information Security and Cryptology. His current
research interests are information security and side-channel
cryptographic analysis. He took part in the Korea Certificate-Based
Digital Signature Algorithm Standard project. He has a number of
issued patents and more than one hundred technical publications in
international journals and conferences in the area of information
security.

DooHo Choi received the BS in mathematics
from Sungkyunkwan University, Seoul, Korea,
in 1994, and the MS and PhD in mathematics
from Korea Advanced Institute of Science and
Technology (KAIST), Daejeon, Korea, in 1996,
2002, respectively. He has been a senior
researcher at ETRI, Daejeon, Korea, since

January 2002. His current research interests are side-channel analysis
and its resistant crypto design, security technologies of RFID and
wireless sensor network, lightweight cryptographic protocol/module
design, and cryptography based on non-commutativity. He was an
editor of the ITU-T Rec. X.1171.

442 JeaHoon Park et al. ETRI Journal, Volume 33, Number 3, June 2011

YouSung Kang received the BE and ME
degrees in electronics engineering from
Chonnam National University, Gwangju, Korea,
in 1997 and in 1999, respectively. He is now
pursuing the PhD in electrical and electronic
engineering from KAIST. In November 1999
he joined ETRI, and he is now a senior member

of engineering staff. He is a member of the IEEE, IACR, and the
Korea Institute of Information Security & Cryptology (KISC), and he
is on the editorial staff of Journal of KISC. His research interests
include the areas of RFID/USN security, wireless LAN security,
cryptographic protocol, and side-channel analysis.

JaeCheol Ha received the BE, ME, and PhD in
electronics engineering from Kyungpook
National University, Rep. of Korea, in 1989,
1993, and 1998, respectively. He is currently a
professor of the Department of Information and
Security at Hoseo University, Asan, Korea.
During 1998 to 2006, he also worked as a

professor in the Department of Information and Communication at
Korea Nazarene University, Cheonan, Korea. In 2006, he was a
visiting researcher at the Information Security Institute of Queensland
University of Technology, Australia. His research interests include
network security, smart card security, and side-channel attacks.

