• Title/Summary/Keyword: Chunpoong

Search Result 48, Processing Time 0.036 seconds

Discrimination of Korean ginseng (Panax ginseng Meyer) cultivar Chunpoong and American ginseng (Panax quinquefolius) using the auxin repressed protein gene

  • Kim, Jong-Hak;Kim, Min-Kyeoung;Wang, Hongtao;Lee, Hee-Nyeong;Jin, Chi-Gyu;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.395-399
    • /
    • 2016
  • Background: Korean ginseng (Panax ginseng) is one of the most important medicinal plants in the Orient. Among nine cultivars of P. ginseng, Chunpoong commands a much greater market value and has been planted widely in Korea. Chunpoong has superior quality "Chunsam" ($1^{st}$ grade ginseng) when made into red ginseng. Methods: A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the auxin repressed protein gene of nine Korean ginseng cultivars using specific primers. Results: An SNP was detected between Chunpoong and other cultivars, and modified allele-specific primers were designed from this SNP site to specifically identify the Chunpoong cultivar and P. quinquefolius via multiplex polymerase chain reaction (PCR). Conclusion: These results suggest that great impact to prevent authentication of precise Chunpoong and other cultivars using the auxin repressed protein gene. We therefore present an effective method for the authentication of the Chunpoong cultivar of P. ginseng and P. quinquefolius.

Molecular identification of Korean ginseng cultivar "Chunpoong" using the mitochondrial nad 7 intron 4 region (Mitochondrial nad 7 intron 4 region을 통한 분자생물학적 고려인삼품종 "천풍"검증)

  • Wang, Hong-Tao;Kim, Min-Kyeoung;Kwon, Woo-Saeng;Yang, Deok-Chun
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.15-15
    • /
    • 2010
  • Koran ginseng(Pnax ginseng) is one of the most important medicinal plants in Orient. Among the nine cultivars of Korea ginseng, Chunpoong commands a much greater market value and has been planted widely. A rapid and reliable method for discriminating the Chunpoong cultivar was developed by exploiting a single nucleotide polymorphism (SNP) in the mitochondrial nad7 intron 4 region of nine Korea ginseng cultivars using universal primers. A SNP was detected between Chunpoong and other cultivars and modified allele-specific primers were designed from this SNP site to effective method for the geneic identification of the Chunpoong cultivar of ginseng.

  • PDF

Identification of 'Chunpoong' among Panax ginseng Cultivars Using Real Time PCR and SNP Marker

  • Sun, Hua;Lee, Ok-Ran;Kim, Yu-Jin;Jeong, Seok-Kyu;In, Jun-Gyo;Kwon, Woo-Saeng;Kim, Se-Young;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.47-50
    • /
    • 2010
  • The common DNA extraction methods are indispensable for genotyping by molecular marker analysis. However, genotyping a large number of plants is painstaking. A modified 'NaOH-Tris' method used in this study reduces the extraction time while keeping the cost low and avoiding the use of hazardous chemicals. The endpoint analysis by realtime PCR tends to be fast and effective for the development of SNP markers linked to the 'Chunpoong' cultivar of Panax ginseng. The 'Chunpoong' marker was developed by a major latex-like protein gene sequence. From our results, we suggest that this method is successful in distinguishing 'Chunpoong' from a large number of ginseng cultivars.

Characteristics of New Cultivars in Panax ginseng C.A. Meyer (고려인삼 신품종 특성)

  • Lee, Sung-Sik;Lee, Jang-Ho;Ahn, In-Ok
    • Proceedings of the Ginseng society Conference
    • /
    • 2005.11a
    • /
    • pp.3-18
    • /
    • 2005
  • This paper reports the characteristics of 8 new cultivars for selected from Korean ginseng. The occurance of multi stems were the highest in Yunpoong(45%) and the lowest in Gumpoong(7%), but growth of aerial parts were the highest in Gumpoong and the lowest In Yunpoong among new cultiyars. The ratio of seeds harvest were the highest in Gumpoong(85.4%) and the lowest in Chunpoong(69.1%), but number of seeds per plant were the highest in Yunpoong(108.3ea) and the lowest in Chunpoong(77.5ea) among new cultivars. The ratio of leaf burning were the highest in Chunpoong but the lowest in Yunpoong among new cultivars. In weight distribution of the different parts of the ginseng roots, the ratio of main root were high in Jakyungjong(63.1%) but low in new cultivars(49%-55.9%), but the ratio of lateral root were high in new cultivars(19.3-23.3%), but low in Jakyungjong(13.2%), the ratio of fine root were not different. Root yield declined in the order of Yunpoong, Gumpoong, Gopoong, Chunpoong, Sunpoong, Jakyungjong. The length of main root were the longest in Chunpoong(8,0cm) but the shortest in Yunpoong(6,4cm), The ratio of rusty-root was low in new cultivars(0,2-9,5%), but high in Jakyungiong(16,3%). The grade of red ginseng roots decreased in the order of Chunpoong, Gumpoong, Gopoong, Sunpoong, Yunpoong, Cheongsun, Jakyungjong. The total ginsenoside contents per dry weight in main roots was high in Gumpoong(8.53mg), Yunpoong(8.13mg), Gopoong(7,47mg), but low in Chunpoong(5.73mg), Sunpoong(4.87mg).

  • PDF

Ginsenosides Production through in vitro Culture of Adventitous Roots Induced from Panax ginseng "Chunpoong" (인삼 천풍의 부정근 배양을 통한 Ginsenosides 생산)

  • 인준교;이범수;송원섭;양덕춘
    • Korean Journal of Plant Resources
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • We have investigated the optimal conditions for the growth and ginsenoside production in adventitious root of “Chunpoong” (Panax ginseng C.A. Meyer). Ginseng adventitous roots induced from the embryo of “Chunpoong” were cultured in various plant media supplemented with several growth hormones. The best growth rate and high ginsenoside contents were obtained in B5 medium supplemented with IBA (2 mg/L) and kinetin (0.1 mg/L). The supplement of 2.5 mM KH$_2$PO$_4$ was good for high growth rate of the adventitious roots, but the accumulation of ginsenosides was increased by reducing the KH$_2$PO$_4$ concentration to 1.25 mM. We have established the effective liquid culture system for the optimal growth and ginsenoside production of “Chunpoong” adventitious roots.

Characteristics of Photosynthesis among New Cultivars of Ginseng (Panax ginseng C.A. Meyer) (인삼 신품종의 광합성 특성)

  • Lee, Sung-Sik
    • Journal of Ginseng Research
    • /
    • v.26 no.2
    • /
    • pp.85-88
    • /
    • 2002
  • This study was carried out to obtain information of the photosynthetic rate at various temperature and light intensity, stomata, chlorophyll, specific leaf weight, characteristics of aerial part and root in ginseng new cultivars developed by pure line selection. The light saturation point of leaves in new cultivars and Jakyungjong were 15,000 lux, and the optimum air temperature on the photosynthesis of new cultivars and Jakyungjong were 20$\^{C}$. The photosynthetic rates were increased in order of Jakyungjong, Gopoong, Chunpoong and Yunpoong. The dark respiration rate of leaves in ginseng cultivars were increased according to the increasing of temperature, and the dark respiration rate of leaves of Yunpoong was the highest among cultivars. The specific leaf weight (SLW) were increased in order of Jakyungjong, Yunpoong, Gopoong, Chunpoong, but total chlorophyll contents were not different among cultivars. Stomata frequency of Yunpoong was the highest being 69.2ea among cultivars, while the length of stomata was reverse. Yunpoong was superior in aerial part among ginseng cultivars : the number of stem was 1.8ea, the number of palmately leaves was 7.7ea, the number of leaflets was 41.0ea, leaf area was 12.3 dm$^2$ The root weight were increased in order of Jakyungjong, Gopoong, Chunpoong and Yunpoong. Chunpoong and Gopoong hove good root shape the length of tap root in Chunpoong and Gopoong were the longest being 6.5 cm and 6.8 cm respectively, but that in Yunpoong was the shortest being 4.4 cm.

Characteristics of Flowering and Fruiting in New Varieties and Lines of Panax ginseng C.A. Meyer (인삼 신품종과 계통의 개화 및 결실 특성)

  • 권우생;이명구;이장호
    • Journal of Ginseng Research
    • /
    • v.25 no.1
    • /
    • pp.41-44
    • /
    • 2001
  • This study aimed to identify the flowering and fruiting characteristics of 2 varieties (Chunpoong and Yunpoong), 3 superior lines (KG103, KG104, KG105) and Hwangsookjong selected for development of varieties of Panax ginseng C.A. Meyer. The flowering date of Yunpoong and KG103 line showed earlier than any other lines or variety. Fertility ratio of KG104 was higher than others and the lowest with KG103 showing over 60% in all varieties and lines tested. On the fruiting type of lines, ratio of single ovary type of Chunpoong and KG105 was higher than double ovary type while Yunpoong, KG104 and Hwangsookjong were formed more double ovary type. Seed yield of KG104 per stem was the highest but Yunpoong showed the highest per kan (90 ${\times}$ 180 cm). Seed size of KG103 was the biggest among the lines tested, meanwhile that of Chunpoong and Hwangsookjong were smaller.

  • PDF

Characteristics of Resistant Lines to High-Temperature Injury in Ginseng (Panax ginseng C. A. Meyer)

  • Lee, Joon-Soo;Lee, Jang-Ho;Ahn, In-Ok
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.274-281
    • /
    • 2010
  • This experiment was conducted to examine ginseng lines resistant and susceptible to high-temperature injury and to investigate characteristics of the selected lines: leaf burning phenomenon, chlorophyll content, quantum yield, and maximum light interception rate. The leaf burning phenomenon incidence rates of the resistant lines Yunpoong, high-temperature injury resistance (HTIR)1, HTIR2, and HTIR3 were low: 5.8%, 3.6%, 4.0%, and 1.9%, respectively. Resistance of the susceptible lines Chunpoong, high-temperature injury susceptible (HTIS)1, and HTIS2 was high: 58.5%, 23.2%, and 21.7%, respectively. The chlorophyll content (SPAD value) of the resistant lines Yunpoong, HTIR1, HTIR2, and HTIR3, which were exposed to high temperatures and intense light, remained as high at 24.8, 27.9, 24.9, and 30.6, respectively, but that of the susceptible lines Chunpoong, HTIS1, and HTIS2 was low at 21.0, 21.1, and 20.1, respectively. During the summer season, the quantum yield of the resistant lines (Yunpoong, HTIR1, HTIR2, and HTIR3) changed little, but that of the susceptible lines (Chunpoong, HTIS1, and HTIS2) changed dramatically. The maximum light interception rate (Fm/Fv value) for the resistant lines (Yunpoong, HTIR1, HTIR2, and HTIR3) was as high as 0.848, 0.794, 0.805, and 0.813, respectively, while that of the susceptible lines (Chunpoong, HTIS1, and HTIS2) was 0.678, 0.642, and 0.717, respectively. Based on these results, the high-temperature injury-resistant lines seemed to be less susceptible to high light, even at high temperatures. Future studies on red ginseng quality and its active ingredients in resistant ginseng lines and field experimentation will be conducted to verify the potential of the resistant lines.

Optimal Harvesting Time of Ginseng Seeds and Effect of Gibberellic Acid (GA3) Treatment for improving Stratification Rate of Ginseng (Panax ginseng C. A. Meyer) Seeds (인삼 종자의 개갑률 향상을 위한 적정 수확시기 및 GA3 처리 효과)

  • Kim, Young Chang;Kim, Young Bae;Park, Hong Woo;Bang, Kyong Hwan;Kim, Jang Uk;Jo, Ick Hyun;Kim, Kee Hong;Song, Beom Heon;Kim, Dong Hwi
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.6
    • /
    • pp.423-428
    • /
    • 2014
  • This study was performed to identify optimal harvesting time of ginseng seeds and to examine the effect of $GA_3$ treatment for improvement of seed stratification rate. Ginseng seeds harvested from Land race, Chunpoong and Yunpoong cultivar in July 20 were tested for stratification rate. It was shown that stratification rates of land race, Yunpoong and Chunpoong cultivar were 94.1%, 93.1%, and 82.6%, respectively. Seeds of Chunpoong cultivar harvested 10-15 days later showed a comparable stratification rate to that of Land race, indicating that late harvest of Chunpoong seeds is beneficial for the increase of stratification rate. The higher stratification rate was found in mature seeds (92.3%) than immature seeds (37.8%), both of which were harvested in July 20. Stratification rate of mature seeds harvested in July 15 was 87.5%, demonstrating optimal harvesting time of ginseng seeds with higher stratification rate is after mid-July. An exponential growth of endosperms of ginseng seeds was observed from early June to mid-June and then slow growth was observed. There was no obvious growth of embryos from fertilization to mid-August. After the this time, embryos quickly grew until late October. Thus, appropriate stratification control is essential during the period (from early September to late October) in order to optimize embryo growth and development. While no increase of stratification rate was observed in seeds treated with 50 ppm of $GA_3$, significant increases were observed in seeds treated with 100 ppm of $GA_3$. At this concentration of $GA_3$, the stratification rate of Land race, Chunpoong and Yunpoong cultivar was 95.0%, 95.3%, and 96.5%, respectively.

Analysis of Ginsenosides and Non-Saponin Components of Red Ginseng from Landraces and New Varieties

  • Ahn, Seung Il;Kim, Sae Kyul;Yang, Byung Wook;Lee, Eun Sup;Kang, Chang Sung;Hahm, Young Tae
    • Horticultural Science & Technology
    • /
    • v.34 no.5
    • /
    • pp.790-798
    • /
    • 2016
  • We quantitatively analyzed eight varieties of 6-year-old red ginseng, including four local landraces from the Inje, Geumsan, Jinan, and Punggi regions and four new varieties, Chunpoong, Yunpoong, Guempoong, and K-1, for 10 ginsenosides, acidic polysaccharide, crude polyacetylene, and total polyphenol content to find out which varieties are most suitable for producing red ginseng. Most of the new varieties contained more ginsenosides than the local landraces. While the acidic polysaccharide content of Geumsan red ginseng was lower than that of the others, its crude polyacetylene content was the highest, with a mean of 33.99%. The Inje, Geumsan, and Jinan red ginseng had a significantly higher total polyphenol content than the others.