• Title/Summary/Keyword: Chungju dam

Search Result 165, Processing Time 0.02 seconds

Evaluation of the Applicability of a Distributed Model at the Downstream of Dam (댐 하류 지점에 대한 분포형 모형의 적용성 평가)

  • Choi, Yun-Seok;Kim, Kyung-Tak;Shim, Myung-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.703-713
    • /
    • 2009
  • Dam has very important roles in both water use and flood control. Dam release and runoff from rainfall affect directly to the flood control at the downstream of dam during heavy storm especially. This study evaluates the applicability of a distributed model by applying the GRM (Grid based Rainfall-runoff Model) based on HyGIS (Hydro Geographic Information System) environment to runoff modeling at the downstream of dam where the discharge from dam and rainfall affect simultaneously. In order to do this, Yeoju watershed in Han River basin is selected. Rainfall data and discharge from Chungju regulation dam and Hoengseong dam are applied to runoff simulation. The modeling results are verified with Yeoju water level station, and they show good agreement with observed hydrographs. And this study shows that GRM is able to simulate appropriately the effect of dam discharge and rainfall on watershed runoff.

Investigating the Effects of Meteorological Disasters on Hydroelectric Power Generation Using a Structural Equation Modeling (구조방정식모형을 이용한 기상재해가 수력발전을 통한 전력 생산에 미치는 영향 분석)

  • Kim, Jiyoung;Byun, Sung ho;Yoo, Jiyoung;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-41
    • /
    • 2023
  • Recently, global warming has accelerated climate change, increased extreme weather phenomena, and increased the frequency and intensity of weather disasters, leading to increasing uncertainty about the power production of new and renewable energy that is sensitive to weather. In fact, it has been reported that a number of damage to hydroelectric power generation have occurred due to weather disasters. Therefore, using the hydroelectric power generation performance data of Chungju Dam, meteorological data of Chungju Meteorological Observatory, and operation data of Chungju Dam, this study investigated the effect of meteorological disasters on hydroelectric power generation through structural equation modeling considering the number and intensity of meteorological disasters per month. The results indicated that the increased drought occurrence affected the decreased hydroelectric power generation by about 38.3 %, however the increased hydroelectric power generation could not explained by the increased flood occurrence. In conclusion, an increased drought occurrence in future may significantly influence hydroelectric power generation.

A study for the target water level of the dam for flood control (댐 홍수조절을 위한 목표수위 산정연구)

  • Kwak, Jaewon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.545-552
    • /
    • 2021
  • The burden of flood control on the dam under frequently flood due to climate change and especially heavy flood in 2020 year are come to the forward and increased. The objective of the study is therefore to establish the method to estimate capacity and target water level for flood control in actual dam management. Frequency matching method was applied to establish a pair of cumulative distribution function (CDF) based on daily dam inflow and discharge records. The relationship between dam storage and discharge volume represented as a percentage of inflow volume was derived and its characteristics was analyzed. As the result, the Soyanggang (45%) and Chungju Dam (39%) contributing to flood control with temporarily storing flood runoff. The method and diagram to estimate flood control capacity and target water level for flood control in the dam were established. The result of the study could be used as a supplementary data for flood control of the dam according to the rainfall prediction on the Korea Meteorological Administration.

Assessment of Snowmelt Impact on Chungju Dam Watershed Inflow Using Terra MODIS Data and SWAT Model (Terra MODIS 위성영상과 SWAT 모형을 이용한 융설이 충주댐 유입량에 미치는 영향 평가)

  • Kim, Saet Byul;Ahn, So Ra;Shin, Hyung Jin;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.2
    • /
    • pp.457-467
    • /
    • 2014
  • This study is to evaluate the snowmelt impact on dam inflow for the Chungju Dam watershed $6,642.0km^2$ using Terra MODIS (Moderate-Resolution Imaging Spectroradiometer) and Soil and Water Assessment Tool (SWAT). To determine the SWAT snowmelt parameter; snow cover depletion curve (SCDC) the snow depth distribution (SDD) using Terra MODIS was used, the snow depth was spatially interpolated using snowfall data of ground meteorological stations. For 10 sets (2000-2010) data during snowmelt period (November-April), the sno50cov parameter, that is, the 50% coverage at a fraction of SCDC which determines the shape of snow depletion process, showed the values of 0.4 to 0.7. The SWAT model was calibrated with average $R^2$ of 0.54 using the sno50cov of each year. The 10 years average streamflow during snowmelt period was 104.3 mm which covers 12.0% of the annual streamflow.

Inference of natural flood frequency for the region affected by dams in Nam Han River (남한강 유역 댐 영향 지역의 기본홍수량 추론)

  • Kim, Nam Won;Lee, Jeong Eun;Lee, Jeongwoo
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.599-606
    • /
    • 2016
  • The objective of this study is to estimate the unregulated flood frequency from Chungju dam to Yangpyung gauging station for the region affected by dams based on the peak discharges simulated by storage function routing model. From the flood frequency analyses, the quantiles for the unregulated flood frequency at 6 sites have similar pattern to each other, and their averaged quantile almost matched to the result from the regional flood frequency analysis. The quantile and annual mean discharge for the unregulated flood frequency for the downstream of Chungju dam show the similar behaviour to those for the upstream area. While the quantile and the annual mean discharge for the regulated flood frequency are significantly different from those for the unregulated flood frequency. In particular, the qunatile shows severe difference as the return period increases, and the annual mean discharge has a tendency to approach to the natural flood as the distance from dam increases.

Analysis of ensemble streamflow prediction effect on deriving dam releases for water supply (용수공급을 위한 댐 방류량 결정에서의 앙상블 유량 예측 효과 분석)

  • Kim, Yeonju;Kim, Gi Joo;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.12
    • /
    • pp.969-980
    • /
    • 2023
  • Since the 2000s, ensemble streamflow prediction (ESP) has been actively utilized in South Korea, primarily for hydrological forecasting purposes. Despite its notable success in hydrological forecasting, the original objective of enhancing water resources system management has been relatively overlooked. Consequently, this study aims to demonstrate the utility of ESP in water resources management by creating a simple hypothetical exercise for dam operators and applying it to actual multi-purpose dams in South Korea. The hypothetical exercise showed that even when the means of ESP are identical, different costs can result from varying standard deviations. Subsequently, using sampling stochastic dynamic programming (SSDP) and considering the capacity-inflow ratio (CIR), optimal release patterns were derived for Soyang Dam (CIR = 1.345) and Chungju Dam (CIR = 0.563) based on types W and P. For this analysis, Type W was defined with standard deviation equal to the mean inflow, and Type P with standard deviation ten times of the mean inflow. Simulated operations were conducted from 2020 to 2022 using the derived optimal releases. The results indicate that in the case of Dam Chungju, more aggressive optimal release patterns were derived under types with smaller standard deviations, and the simulated operations demonstrated satisfactory outcomes. Similarly, Soyang Dam exhibited similar results in terms of optimal release, but there was no significant difference in the simulation between types W and P due to its large CIR. Ultimately, this study highlights that even with the same mean values, the standard deviation of ESP impacts optimal release patterns and outcomes in simulation. Additionally, it underscores that systems with smaller CIRs are more sensitive to such uncertainties. Based on these findings, there is potential for improvements in South Korea's current operational practices, which rely solely on single representative values for water resources management.

Estimation of the value of dam flushing by using Bayesian analysis - the case of Chungju dam (베이지안 추정법을 활용한 댐 추가방류수의 경제적 가치 추정 - 충주댐 사례)

  • Lee, Joo-Suk;Choi, Han-Joo;Yoo, Seung-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.467-473
    • /
    • 2017
  • Recently as algae phenomenon has been intensified, the need for additional dam flushing has been raised. To establish the more rational policies concerning the dam flushing, it is necessary to evaluate the dam flushing. This paper attempts to examine households' willingness to pay (WTP) for dam flushing by using a contingent valuation (CV). Especially, unlike other CV studies which used maximum likelihood estimation (MLE), this study employed Bayesian approach. This study surveyed a randomly selected sample of 1,000 households nation-widely, and asked respondents questions in person-to-person interviews about how they would be willing to pay for the additional dam flushing. Respondents overall accepted the contingent market and were willing to contribute a significant amount (1,909.4 won), on average, per household per year. The aggregate value amounts to approximately 35.7 billion won per year.

Hydrosphere Change Monitoring of the Daecheong-Dam Basin using Multi-temporal Landsat Images (시계열 Landsat영상을 이용한 대청댐 유역의 수계변화 모니터링)

  • Um, dae-yong;Park, joon-kyu;Lee, jin-duk
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.932-936
    • /
    • 2007
  • In this study, it analyzed the hydrosphere change up to recently since the construction of Daecheong dam using Landsat satellite images and qualitatively the hydrosphere change of the Daecheong dam basin. These study detected the hydrosphere change with applying supervised classification about Landsat satellite image corresponding to 4 periods of 1981, 1987, 1993, and 2002. For this, it designated the class of hydrosphere, vegetation, etc and achieved overlay analysis with extracting only the hydrosphere, and though this, These study monitored the change about hydrosphere of Daecheong dam basin efficiently.

  • PDF

Performance Evaluation of Water Supply for a Multi-purpose Dam by Deficit-Supply Operation (물 부족량 공급 운영 방식에 의한 다목적댐 물 공급의 안정성 평가)

  • Lee, Dong Ryul;Moon, Jang Won;Choi, Si Jung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.195-206
    • /
    • 2014
  • In this study, a performance evaluation method of water supply for a multi-purpose dam based on deficitsupply method and reservoir storage is presented. The method is applied to 16 multi-purpose dams and water supply performance is evaluated. As a result, 6 dams (Soyanggang, Chungju, Hoengseong, Andong, Imha, and Hapcheon dam) have highest performance and 2 dams (Sumjingang and Buan dam) have relatively low performance. Particularly, Buan dam is the most vulnerable in the analysis results of reliability, resiliency, and vulnerability. Therefore, measures to improve the performance of water supply are needed in Buan multi-purpose dam.

Assessment of Climate Change Impact on Storage Behavior of Chungju and the Regulation Dams Using SWAT Model (SWAT을 이용한 기후변화가 충주댐 및 조정지댐 저수량에 미치는 영향 평가)

  • Jeong, Hyeon Gyo;Kim, Seong-Joon;Ha, Rim
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1235-1247
    • /
    • 2013
  • This study is to evaluate the climate change impact on future storage behavior of Chungju dam($2,750{\times}10^6m^3$) and the regulation dam($30{\times}10^6m^3$) using SWAT(Soil Water Assessment Tool) model. Using 9 years data (2002~2010), the SWAT was calibrated and validated for streamflow at three locations with 0.73 average Nash-Sutcliffe model Efficiency (NSE) and for two reservoir water levels with 0.86 NSE respectively. For future evaluation, the HadCM3 of GCMs (General Circulation Models) data by scenarios of SRES (Special Report on Emission Scenarios) A2 and B1 of the IPCC (Intergovernmental Panel on Climate Change) were adopted. The monthly temperature and precipitation data (2007~2099) were spatially corrected using 30 years (1977~2006, baseline period) of ground measured data through bias-correction, and temporally downscaled by Change Factor (CF) statistical method. For two periods; 2040s (2031~2050), 2080s (2071~2099), the future annual temperature were predicted to change $+0.9^{\circ}C$ in 2040s and $+4.0^{\circ}C$ in 2080s, and annual precipitation increased 9.6% in 2040s and 20.7% in 2080s respectively. The future watershed evapotranspiration increased up to 15.3% and the soil moisture decreased maximum 2.8% compared to baseline (2002~2010) condition. Under the future dam release condition of 9 years average (2002~2010) for each dam, the yearly dam inflow increased maximum 21.1% for most period except autumn. By the decrease of dam inflow in future autumn, the future dam storage could not recover to the full water level at the end of the year by the present dam release pattern. For the future flood and drought years, the temporal variation of dam storage became more unstable as it needs careful downward and upward management of dam storage respectively. Thus it is necessary to adjust the dam release pattern for climate change adaptation.