DOI QR코드

DOI QR Code

Analysis of ensemble streamflow prediction effect on deriving dam releases for water supply

용수공급을 위한 댐 방류량 결정에서의 앙상블 유량 예측 효과 분석

  • Kim, Yeonju (International School of Urban Sciences, University of Seoul) ;
  • Kim, Gi Joo (Department of Civil & Environmental Engineering, Tufts University) ;
  • Kim, Young-Oh (Department of Civil & Environmental Engineering, Seoul National University)
  • 김연주 (서울시립대학교 국제도시과학대학원) ;
  • 김기주 (Tufts University 건설환경공학부) ;
  • 김영오 (서울대학교 건설환경공학부)
  • Received : 2023.10.24
  • Accepted : 2023.12.11
  • Published : 2023.12.31

Abstract

Since the 2000s, ensemble streamflow prediction (ESP) has been actively utilized in South Korea, primarily for hydrological forecasting purposes. Despite its notable success in hydrological forecasting, the original objective of enhancing water resources system management has been relatively overlooked. Consequently, this study aims to demonstrate the utility of ESP in water resources management by creating a simple hypothetical exercise for dam operators and applying it to actual multi-purpose dams in South Korea. The hypothetical exercise showed that even when the means of ESP are identical, different costs can result from varying standard deviations. Subsequently, using sampling stochastic dynamic programming (SSDP) and considering the capacity-inflow ratio (CIR), optimal release patterns were derived for Soyang Dam (CIR = 1.345) and Chungju Dam (CIR = 0.563) based on types W and P. For this analysis, Type W was defined with standard deviation equal to the mean inflow, and Type P with standard deviation ten times of the mean inflow. Simulated operations were conducted from 2020 to 2022 using the derived optimal releases. The results indicate that in the case of Dam Chungju, more aggressive optimal release patterns were derived under types with smaller standard deviations, and the simulated operations demonstrated satisfactory outcomes. Similarly, Soyang Dam exhibited similar results in terms of optimal release, but there was no significant difference in the simulation between types W and P due to its large CIR. Ultimately, this study highlights that even with the same mean values, the standard deviation of ESP impacts optimal release patterns and outcomes in simulation. Additionally, it underscores that systems with smaller CIRs are more sensitive to such uncertainties. Based on these findings, there is potential for improvements in South Korea's current operational practices, which rely solely on single representative values for water resources management.

2000년대 이후 우리나라에 도입된 앙상블 유량 예측은 수문 예측 현업에서 성과를 보였음에도 불구하고 수자원 시스템 관리에서는 적극적으로 활용되지 못하고 있다. 따라서 본 연구에서는 용수공급을 위한 수자원 관리 측면에서 앙상블 유량 예측의 효용성을 보이고자 댐 실무자들을 위한 간단한 가상 예제를 만들고, 이를 확장하며 실제 대한민국 다목적댐에 적용하였다. 가상 예제에서는 앙상블 유량 예측의 평균은 같지만 표준편차가 다를 때, 댐 운영 비용이 상이함을 확인하였다. 그리고 이를 대한민국 다목적댐에 적용하기 위해 동일한 평균을 가지지만 표준편차가 평균과 동일한 유형W와 표준편차가 평균의 10배인 유형 P를 가정하여 용량 대비 연유입량 비율에 따라 소양강댐(CIR = 1.345)과 충주댐(CIR = 0.563)에 표본 추계학적 동적계획법으로 최적방류량을 도출하였다. 그리고 도출된 최적방류량으로 2020년부 2022년까지 모의 운영을 진행하였다. 그 결과, 충주댐에서는 표준편차가 적은 유형W에서 상대적으로 공격적인 최적방류량이 도출되었고, 모의 운영 결과 또한 양호함을 보였다. 소양강댐에서도 최적방류량에서 충주댐과 같은 결과를 보였지만, 모의 운영에서는 유형W와 P의 차이가 없었다. 결과적으로 동일한 평균을 가지더라도 앙상블 유량 예측의 표준편차에 따라 다른 최적방류량과 모의 운영 결과가 도출되었고, 특히 용량 대비 연유입량이 작을수록 이러한 불확실성에 더욱 민감하게 반응함을 보였다. 본 내용을 바탕으로 현재 단일 대푯값만을 사용하여 댐 운영을 하는 수자원 관리에 개선을 기대한다.

Keywords

Acknowledgement

본 결과물은 한국연구재단 4단계 BK21 사업과 환경부의 재원으로 한국환경산업기술원의 가뭄대응 물관리 혁신기술개발사업(RS-2023-0023194)의 지원을 받아 연구되었습니다.

References

  1. Connelly, B.A., Braatz, D.T., Halquist, J.B., DeWeese, M.M., Larson, L., and Ingram, J.J. (1999). "Advanced hydrologic prediction system." Journal of Geophysical Research: Atmospheres, Vol. 104, No. D16, pp. 19655-19660.  https://doi.org/10.1029/1999JD900051
  2. Day, G.N. (1985). "Extended streamflow forecasting using NWSRFS." Journal of Water Resources Planning and Management, Vol. 111, No. 2, pp. 157-170.  https://doi.org/10.1061/(ASCE)0733-9496(1985)111:2(157)
  3. Eum, H.-I. (2007). Non-flood period operational policies for the Geum River multireservoir system using sampling SDP with ESP. Ph.D. Thesis, Seoul National University. 
  4. Eum, H.-I., Ko, I.-H., and Kim, Y.-O. (2006). "Value of ensemble streamflow forecasts for reservoir operations during the drawdown period." Journal of Korea Water Resources Association, Vol. 39, No. 3, pp. 187-198.  https://doi.org/10.3741/JKWRA.2006.39.3.187
  5. Faber, B.A., and Stedinger, J. (2001). "Reservoir optimization using sampling SDP with ensemble streamflow prediction (ESP) forecasts." Journal of Hydrology, Vol. 249, No. 1-4, pp. 113-133.  https://doi.org/10.1016/S0022-1694(01)00419-X
  6. Han River Flood Control Office (Han River FCO) (2009). Probabilistic streamflow prediction using ensemble model. Report no. 11-1500000-001432-14, Ministry of Land, Transport and Maritime Affairs. 
  7. Han River Flood Control Office (Han River FCO) (2022). Water resources outlook, accessed 22 November 2022, . 
  8. He, S., Guo, S., Zhang, J., Liu, Z., Cui, Z., Zhang, Y., and Zheng, Y. (2022). "Multi-objective operation of cascade reservoirs based on short-term ensemble streamflow prediction." Journal of Hydrology, Vol. 610, 127936. 
  9. Karamouz, M., and Houck, M.H. (1987). "Comparison of stochastic and deterministic dynamic programming for reservoir operating rule generation 1." Journal of the American Water Resources Association, Vol. 23, No. 1, pp. 1-9.  https://doi.org/10.1111/j.1752-1688.1987.tb00778.x
  10. Kelman, J., Stedinger, J.R., Cooper, L.A., Hsu, E., and Yuan, S.Q. (1990). "Sampling stochastic dynamic programming applied to reservoir operation." Water Resources Research, Vol. 26, No. 3, pp. 447-454.  https://doi.org/10.1029/WR026i003p00447
  11. Kim, Y.-O., Jeong, D.-I., and Kim, H.-S. (2001). "Improving water supply outlook in korea with ensemble streamflow prediction." Water International, Vol. 26, No. 4, pp. 563-568.  https://doi.org/10.1080/02508060108686957
  12. K-water (2004). A study on river runoff prediction methods for watershed integrated water management. Ministry of Construction & Transportation. 
  13. National Drought Information Analysis Center (NDIC) (2018). Drought information analysis annual report. Report No. 2018-SA-MR-3-1674, Ministry of Environment. 
  14. National Drought Information Analysis Center (NDIC) (2021). Drought information analysis annual report. Report No. 2021-WR-AR-340-1752, Ministry of Environment. 
  15. Ramaswamy, V., and Saleh, F. (2020). "Ensemble based forecasting and optimization framework to optimize releases from water supply reservoirs for flood control." Water Resources Management, Vol. 34, pp. 989-1004.  https://doi.org/10.1007/s11269-019-02481-8
  16. Riverside Technology, Inc. (RTI) (1997). Extended Streamflow Prediction analysis and display program - User's manual. National Weather Service, Fort Collins, CO, U.S. 
  17. Sung, J.Y., Kang, B.S., Kim, B.M., and Noh, S.J. (2022). "Development and application of integrated indicators for assessing the water resources performance of multi-purpose and water supply dams." Journal of Korea Water Resources Association, Vol. 55, No. 9, pp. 687-700.  https://doi.org/10.3741/JKWRA.2022.55.9.687
  18. World Meteorological Organization (WMO) (1975). Intercomparison of conceptual models used in operational hydrological forecasting. Report No. 429, Geneva, Switzerland.