• Title/Summary/Keyword: Chlorpyrifos

Search Result 210, Processing Time 0.036 seconds

The Exposure Risk Assessment of Residual Pesticides in Tea (다류에 존재하는 잔류농약 노출 안전성 평가)

  • Kim, Jae-Kwan;Oh, Moon-Seog;Kim, Ki-Yu;Kim, Yeong-Su;Son, Mi-Hee;Bae, Ho-Jung;Kang, Chung-Won;Park, Young-Bok;Yoon, Mi-Hye;Lee, Jong-Bok;Jeong, Ju-Yeon
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.28-35
    • /
    • 2011
  • The investigation of 218 residual pesticides for 19 types of tea (persimmon leaf tea, chrysanthemum tea, green tea, lavender tea, rosemary tea, dandelion leaf tea, puer tea, mulberry leaf tea, hydrangea leaf tea, jasmine tea, nuomixiang tea, buckwheat tea, mugwort tea, lotus leaf tea, oolong tea, longjing tea, rose tea, tiehkwanyin tea and huoguo tea) obtained from markets in Ansan and Suwon was carried out to assess the risk for residual pesticides in tea. The detection rate was 23.1 % (19 samples of total 65 tea samples) and the detected pesticides were 15 pesticides, such as bifenthrin, bromopropylate, chlorpyrifos, cyhalothrin, cypermethrin, chlorfenapyr, dicofol, endosulfan, fenpropathrin, fludioxonil, fenvalerate, iprobenfos, isoprothiolane, tetradifon and triazophos. The range of concentrations for the detected residual pesticides was 0.01 to 1.24 mg/kg which showed below their maximum residue limits (MRL), but the residual concentration of bifenthrin in a puer tea showed above the legal limit of 0.3 mg/kg. The result of risk assessment of residual pesticides for the detected 15 samples showed that EDI (estimated daily intake) of the pesticides detected ranged 0.0001~0.0844% of their ADI (acceptable daily intake).

Pesticide Multiresidues Analysis of Environmental-friendly Agricultural Soils by the Complex Cleanup Method of Accelerated Solvent Extraction (ASE) and Solid Phase Extraction (SPE) (ASE 및 SPE 복합정제법을 이용한 친환경농업토양의 다성분잔류농약 분석)

  • Moo, Kyung-Mi;Park, Jin-Woo;Lee, Young-Guen;Choi, Young-Whan
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.73-80
    • /
    • 2011
  • Fifty substances of pesticide were selected for analysis through the historical investigation of pesticides detected from environmental-friendly agricultural soil, and the environmental-friendly agricultural soils in Gyeongnam area were collected and then were accepted Anve (accelerated solvent extraction) and SPve (solid-phase extraction) as multiresidue extraction and clean up methods suitable to the soils. The pesticide residues were analyzed by using GC/vCD/NPD, HPLC/UV/FL, GC/MSD, or HPLC/MSD. 50 kinds of pesticides for the soils were an average of 95.5% from retrieval ratio of the 72 to 118% range, and the average of 3.0% for CV (%). Among 40 samples of soil, 20 components were detected from pesticide residues of 21 samples, and average amounts detected for these components were 0.035 for endosulfan, 0.043 for ethoprophos, 0.020 for chlorpyrifos, 0.023 for chlorfenapyr, 0.047 for flufenoxuron, 0.070 for fenvalerate, 0.266 for cypermethrin, 0.016 for lufenuron, 0.022 for bifenthrin, 0.025 for fenobucarb/BPMC, 0.043 for difenoconazole, 0.059 for fenarimol, 0.020 for kresoxim-methyl, 0.026 for tetraconazole, 0.039 for isoprothiolane, 0.017 for iprobenfos, 0.014 for nolrimol, 0.156 for fluquinconazole, 0.047 for tebuconazole, and 0.045 mg/kg for oxadiazon. Therefore it is infered that the establishment of pesticide residues limit for environmental-friendly agricultural soil is needed as soon as possible.

Investigation of Hazardous materials from domestic and Chinese dried-ear mushroom (국내산 및 중국산 건조 목이(Auricularia auricula-judae)의 유해물질 조사)

  • Jang, Eun-Kyoung;Jeong, Sang-Wook;Choi, Seul-Gi;Kim, Yu-Seon;Lee, Won-Ho;Ban, Seung-Eon
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.387-392
    • /
    • 2020
  • Eight dried ear mushroom products (three domestic and five Chinese products) distributed in Korea were analyzed for 321 residual pesticides, 7 heavy metals, and 3 types of radioactivity. Residual pesticides in the domestic products were not detected. However, chlorpyrifos, isoprocarb, mepiquat chloride, and carbendazim were detected in four Chinese products, all of which were below the allowable residual limit. Among the detected pesticide ingredients, only the residue for mepiquat chloride has been established to be present in ear mushrooms. In the heavy metal test, trace amounts of heavy metals were detected in all samples. However, none of the samples exceeded the allowable residual limits, except for one domestic sample that exceeded the standard value of 0.3 mg/kg for lead. Radioactivity tests confirmed that levels were below the minimal detectable activity value in all samples.

320 Pesticides Analysis of Essential Oils by LC-MS/MS and GC-MS/MS (LC-MS/MS 와 GC-MS/MS 를 이용한 에센셜 오일 중 320 종 잔류농약 분석법 개발)

  • Oh, Ka Hyang;Park, Sung Mak;Lee, So Min;Jung, So Young;Kwak, Byeong-Mun;Lee, Mi-Gi;Lee, Mi Ae;Choi, Sung Min;Bin, Bum-Ho
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.317-331
    • /
    • 2021
  • Essential oil is a volatile substance obtained by physically obtaining fragrant plant materials made by one single plant and plant species, and is widely used for cosmetics, fragrances, and aroma therapy due to its excellent preservation, sterilization, and antibacterial effects. When essential oil would undergo the extraction and concentration processes, the agricultural chemicals thereof would be extracted and concentrated only to be harmful to the human body. This study analyzes 320 residual agricultural chemicals concentrated in the essential oil, and to this end, LC-MS/MS and GC-MS/MS are used, while the freezing process is applied instead of the conventional refining process hexane, to improve the preprocessing method. As a result of analyzing the essential oil, such ingredients as chlorpyrifos, piperonyl butoxide and silafluofen have been detected in Basil oil and Clove leaf oil. Hence, it is perceived that the residual agricultural chemicals should continue to be monitored for the essential oil.

Monitoring of Pathogenic Bacteria, Heavy Metals, and Pesticide Residues in Commercial Edible Dry Flowers (시판 23종 꽃차의 유해세균, 중금속 및 잔류농약 평가)

  • Lee, Yun-Seo;Lee, Dong-Hee;Hwang, Eun-Kyung;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.438-446
    • /
    • 2022
  • Some flowers have a high sensual appeal owing to their unique shape, color, smell, and taste and have been used as functional food and oriental medicine. Recently, edible dry flowers (EDFs) have attracted social attention as noble sources of functional teas. In this study, for the risk assessment of EDFs, pathogenic bacteria, heavy metals, and pesticide residues were monitored in 23 types of commercial EDF. No Enterobacteria spp. and Listeria spp. were found in all EDF products. However, common aerobic bacteria (3.24~3.85 Log CFU/g) were found in EDF, namely, Pueraria lobata, Chamaemelum nobile, Acacia decurrens, Rhododendron mucronulatum Turcz, Oenothera lamarckiana, Brassica napus, and Prunus serrulata. Staphylococcus aureus was found in 11 and Salmonella sp. was found in 8 of the 23 EDFs. Considering the cold extraction of EDF for tea and beverages, the regulation of pathogenic bacteria in EDFs is necessary. No heavy metals such as Pb, Cd, Co, Cr, Cu, Ni, and As were found in all EDFs, except the dry flower of Hemerocallis fulva, which contained Pb at 0.08 ppm. Different pesticides and fungicides were found in EDFs, but their concentrations were very low (0.01~0.08 ppm) and below the maximal residue level. Only the dry flower of Chrysanthemum morifolium had a high content of chlorpyrifos (0.215 ppm), which is long-lasting pesticide. Our results suggest that the establishment of EDF regulations for pesticide residue, culture separation between edible and garden flowers, and guidelines for preventing pathogenic microbial contamination are necessary.

A Study on the Safety of Residual Pesticides in Cereal Grains and Pulses Agricultural Products Excluding Rice (잡곡 농산물의 잔류농약 안전성 조사)

  • Han, Na-Eun;Kim, Jae-Gwan;Yun, Hee-Jeong;Kang, Min-Seong;Cho, Young-Seon;Song, Ji-Won;Kim, Byeong-Tae;Lee, Seong-Nam;Choi, Ok-Kyung
    • Journal of Food Hygiene and Safety
    • /
    • v.37 no.1
    • /
    • pp.1-8
    • /
    • 2022
  • In this study, the pesticide residues in 106 commercial cereal grains were monitored from February to July 2021. For the investigation, 40 domestic and 66 imported products from large, small-to-medium sized offline and online distribution channels, were collected and analyzed by using the multiresidue method for 341 pesticides on GC/ECD, GC/NPD, GC/MSMS, UPLC/PDA, HPLC/FLD, LC/MSMS. Pesticides were detected in total of 8 samples (7.5%), of which one was from big box retailers, two from small and medium-sized distribution stores, and five from online shopping mall. Five (4.7%) samples were found to have pesticide residues greater than the maximum residue limits (MRLs). The detected pesticides in kidney beans (1 case), mung beans (6 cases), and sorghum (1 case), were MGK-264, chlorpyrifos, thiamethoxam, malathion, piperonyl butoxide, and pirimiphos-methyl. Specifically, an excessive amount of thiamethoxam was found from the imported mung bean (5 cases).

Integral Pest Management of the Western Flower Thrips, Frankliniella occidentalis: Optimal Time to Introduce a Natural Predator after Chemical Insecticide Treatment (꽃노랑총채벌레 종합방제 - 화학농약 처리 후 안정적 천적 투입 시기)

  • Chulyoung, Kim;Donghyun, Lee;Donghee, Lee;Eunhye, Ham;Yonggyun, Kim
    • Korean journal of applied entomology
    • /
    • v.61 no.4
    • /
    • pp.519-528
    • /
    • 2022
  • The western flower thrips, Frankliniella occidentalis, infests the hot pepper cultivated in greenhouses and has been considered to be controlled by a natural enemy, Orius laevigatus. However, sporadic outbreaks of the thrips due to fast population growth occasionally need chemical insecticide treatments. This study was designed to develop an optimal integrated pest management (IPM) by using selective insecticides along with a safe re-introduction technique of the natural enemy after the chemical insecticide treatment. First, chemical insecticides were screened to select the high toxic commercial products against F. occidentalis. Five insecticides containing active components (pyriproxyfen+spinetoram, abamectin, spinosad, acetamiprid, and chlorpyrifos) were selected among 17 commercial products. These five selected insecticides gave different toxic properties to the natural enemy, O. laevigatus. Especially, abamectin and spinetoram gave relatively low toxicity to the natural enemy compared to organophosphate or neonicotinoid. Furthermore, the five selected insecticides were assessed in their residual toxicities against O. laevigatus. Organophosphate and neonicotinoid insecticides showed relatively longer residual toxicity compared to abamectin and spinosads. Indeed, abamectin or spinetoram did not give any significant toxicity to O. laevigatus after 3 days post-treatment. These residual effects were further supported by the assessment of the chemical residue analysis of the insecticides using LC-MS/MS. These results suggest an IPM technology: (1) chemical treatment of abamectin or spinetoram against sporadic outbreaks of F. occidentalis infesting hot pepper and (2) re-introduction of O. laevigatus to the crops after 3 days post-treatment to depress the equilibrium density below an economic injury level.

Investigation of Various Pesticide Residues in Commercial Bee Pollen Products Sold in South Korea (한국에서 유통되는 화분식품의 잔류농약 함량 분석)

  • Byeong-Tae Kim;Jae-Gwan Kim;Mi-Hui Son;Young-Sun Cho;Na-Eun Han;Jong-Cheol Choi;Seong-Nam Lee;Myoung-Ki Park;Yong-Bae Park
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.4
    • /
    • pp.202-210
    • /
    • 2023
  • To analyze the pesticide residues in commercial bee pollen products in South Korea, 61 samples were collected and screened for 339 pesticides. Results revealed that approximately 34% (>LOQ) of samples were contaminated with at least one pesticide. The pesticide residue detection rates of domestic and imported samples were 31% and 44%, respectively. Furthermore, the pesticide residue detection rate of online distribution (60%) was higher than that of offline distribution (27%). Fifteen pesticides were discovered in bee pollen, and pendimethalin, chlorfenvinphos, chlorpyrifos, and fluazinam were detected in 7, 6, 3, and 2 order of frequency, respectively. Even though its concentration was low, chlorfenvinphos which is banned in food crops in the United States, European Union, and Korea, was detected in bee pollen samples commonly. Therefore, continuous investigation of pesticide residues in bee pollen products and their acceptance criteria is required for safety.

The Role of CYP2B6*6 Gene Polymorphisms in 3,5,6-Trichloro-2-pyridinol Levels as a Biomarker of Chlorpyrifos Toxicity Among Indonesian Farmers

  • Liem, Jen Fuk;Suryandari, Dwi A.;Malik, Safarina G.;Mansyur, Muchtaruddin;Soemarko, Dewi S.;Kekalih, Aria;Subekti, Imam;Suyatna, Franciscus D.;Pangaribuan, Bertha
    • Journal of Preventive Medicine and Public Health
    • /
    • v.55 no.3
    • /
    • pp.280-288
    • /
    • 2022
  • Objectives: One of the most widely used pesticides today is chlorpyrifos (CPF). Cytochrome P450 (CYP)2B6, the most prominent catalyst in CPF bioactivation, is highly polymorphic. The objective of our study was to evaluate the role of CYP2B6*6, which contains both 516G>T and 785A>G polymorphisms, in CPF toxicity, as represented by the concentration of 3,5,6-trichloro-2-pyridinol (TCPy), among vegetable farmers in Central Java, Indonesia, where CPF has been commonly used. Methods: A cross-sectional study was conducted among 132 vegetable farmers. Individual socio-demographic and occupational characteristics, as determinants of TCPy levels, were obtained using a structured interviewer-administered questionnaire and subsequently used to estimate the cumulative exposure level (CEL). TCPy levels were detected with liquid chromatography-mass spectrometry. CYP2B6*6 gene polymorphisms were analyzed using a TaqMan® SNP Genotyping Assay and Sanger sequencing. Linear regression analysis was performed to analyze the association between TCPy, as a biomarker of CPF exposure, and its determinants. Results: The prevalence of CYP2B6*6 polymorphisms was 31% for *1/*1, 51% for *1/*6, and 18% for *6/*6. TCPy concentrations were higher among participants with CYP2B6*1/*1 than among those with *1/*6 or *6/*6 genotypes. CYP2B6*6 gene polymorphisms, smoking, CEL, body mass index, and spraying time were retained in the final linear regression model as determinants of TCPy. Conclusions: The results suggest that CYP2B6*6 gene polymorphisms may play an important role in influencing susceptibility to CPF exposure. CYP2B6*6 gene polymorphisms together with CEL, smoking habits, body mass index, and spraying time were the determinants of urinary TCPy concentrations, as a biomarker of CPF toxicity.

Development of Analytical Method and Monitoring of Organophosphorus Pesticides in the Raw Water and Clean Water by Liquid Chromatography-Tandem Mass Spectrometry (LC/MS/MS를 이용한 유기인계 농약류의 최적 분석법 정립과 원·정수에서의 모니터링)

  • Kim, Gyung-A;Song, Mi-Jeong;Yeom, Hoon-Sik;Son, Hee-Jong;Lee, Sang-Won;Choi, Jin-Tack
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1569-1582
    • /
    • 2015
  • The analytical method for 16 organophosphorus pesticides was developed in this study. The 16 organophosphorus pesticides were analyzed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) using on-line solid phase extraction (on-line SPE) with PLRP- S cartridge. Analysis of all analytes in the MS/MS was processed in the electrospray ioni-zation (ESI) positive mode. They are Azinphos ethyl, Chlorfenvinphos, Ethion, Famphur, Phosmet, Phosphamidon, Terbufos, Aspon, Chlorpyrifos-methyl, Crotoxyphos, Dichlofenthi-on, Dicrotophos, Fonofos, Thionazin, Dimethoate and Iprobenfos. Limits of detection (LODs) and Limits of quantification(LOQs) were obtained as 0.8~2.0 ng/L and 2.6~6.4 ng/L, respectively. All compounds were not detected at the 8 sampling points of the raw water and clean water.