References
- Jung, C.E., Integrated Pollinator-Pest Management (IPPM) Strategy as Future Apple IPM. Korean J. Appl. Entomol., 60, 145-154 (2021).
- Jung, S.M., Relation between the honey bee mortality and the pesticide residue detected during the pear and apple blooming season. PhD thesis, Andong National University, Andong, Korea (2017).
- Vanengelsdorp, D., Evans, J.D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B.K., Frazier, M., Frazier, J., Cox-Foster, D., Chen, Y., Underwood, R., Tarpy, D.R., Pettis, J.S. Colony Collapse Disorder: A Descriptive Study. PLoS One., 4, e6481 (2009).
- Lee, K.Y., Lee, S.G., Lee, Y.B., Kim, N.J., Kim, J.H., Choi, Y.S., Kang, P.D., Yoon, H.J., Current status of honeybee production for pollination service in 2013. Korean J. Apic., 29, 245-256 (2014).
- Bohme, F., Bischoff, G., Zebitz, C.P.W., Rosenkranz, P., Wallner, K., Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS One, 13, e0199995 (2018).
- Brittain, C., Potts, S.G., The potential impacts of insecticides on the life-history traits of bees and the consequences for pollination. Basic Appl. Ecol., 12, 321-331 (2011). https://doi.org/10.1016/j.baae.2010.12.004
- Vegh, R., Csoka, M., Soros, C., Sipos, L., Food safety hazards of bee pollen - A review. Trends Food Sci. Technol., 114, 490-509 (2021). https://doi.org/10.1016/j.tifs.2021.06.016
- Muli, E., Kilonzo, J., Dogley, N., Monthy, G., Kurgat, J., Irungu, J., Raina, S., Detection of pesticide residues in selected bee products of honeybees (Apis melllifera L.) colonies in a preliminary study from seychelles archipelago. Bull. Environ. Contam. Toxicol., 101, 451-457 (2018). https://doi.org/10.1007/s00128-018-2423-4
- Niell S, Jesus F, Perez C, Mendoza Y, Diaz R, Franco J, Cesio V, Heinzen H., QuEChERS adaptability for the analysis of pesticide residues in beehive products seeking the development of an agroecosystems sustainability monitor. J. Agric. Food Chem., 63, 4484-4492 (2015). https://doi.org/10.1021/acs.jafc.5b00795
- de Oliveira, R.C., Queiroz, S.C.D.N., da Luz, C.F.P., Porto, R.S., Rath, S., Bee pollen as a bioindicator of environmental pesticide contamination. Chemosphere, 163, 525-534 (2016). https://doi.org/10.1016/j.chemosphere.2016.08.022
- Fulton, C.A., Huff Hartz, K.E., Fell, R.D., Brewster, C.C., Reeve, J.D., Lydy, M.J., An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere, 222, 489-493 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.156
- Mullin, C.A., Frazier, M., Frazier, J.L., Ashcraft, S., Simonds, R., Vanengelsdorp, D., Pettis, J.S., High levels of miticides and agrochemicals in north American apiaries: Implications for honey bee health. PLoS One, 5, e9754 (2010).
- Stoner, K.A., Eitzer, B.D., Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS One, 8, e77550 (2013).
- Drummond, F.A., Ballman, E.S., Eitzer, B.D., Du Clos, B., Dill, J., James, D., Exposure of honey bee (Apis mellifera L.) colonies to pesticides in pollen. Environ. Entomol., 47, 378-387 (2018). https://doi.org/10.1093/ee/nvy023
- Nai, Y.S., Chen, T.Y., Chen, Y.C., Chen, C.T., Chen, B.Y., Chen, Y.W., Revealing pesticide residues under high pesticide stressin Taiwan's agricultural environment probed by fresh honey Bee (Hymenoptera: Apidae) pollen. J. Econ. Entomol., 110, 1947-1958 (2017). https://doi.org/10.1093/jee/tox195
- Chaimanee, V., Chantawannakul, P., Khongphinitbunjong, K., Kamyo, T,. Pettis, J.S., Comparative pesticide exposure to Apis mellifera via honey bee-collected pollen in agricultural and non-agricultural areas of Northern Thailand. J. Apic. Res., 58, 720-729 (2019). https://doi.org/10.1080/00218839.2019.1637224
- Tong, Z., Duan, J., Wu, Y., Liu, Q., He, Q., Shi, Y., Yu, L., Cao, H., A survey of multiple pesticide residues in pollen and beebread collected in China. Sci. Total Environ., 640-641, 1578-1586 (2018). https://doi.org/10.1016/j.scitotenv.2018.04.424
- Lambert, O., Piroux, M., Puyo, S., Thorin, C., L'Hostis, M., Wiest, L., Bulete, A., Delbac, F., Pouliquen, H., Widespread occurrence of chemical residues in beehive matrices from apiaries located in different landscapes of western France. PLoS One., 8, e67007 (2013).
- Calatayud-Vernich, P., Calatayud, F., Simo, E., Pico, Y., Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut., 241, 106-114 (2018). https://doi.org/10.1016/j.envpol.2018.05.062
- Tosi, S., Costa, C., Vesco, U., Quaglia, G., Guido, G., A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ., 615, 208-218 (2018). https://doi.org/10.1016/j.scitotenv.2017.09.226
- Beyer, M., Lenouvel, A., Guignard, C., Eickermann, M., Clermont, A., Kraus, F., Hoffmann, L., Pesticide residue profiles in bee bread and pollen samples and the survival of honeybee colonies-a case study from Luxembourg. Environ. Sci. Pollut. Res. Int., 25, 32163-32177 (2018). https://doi.org/10.1007/s11356-018-3187-4
- Friedle, C., Wallner, K., Rosenkranz, P., Martens, D., Vetter, W., Pesticide residues in daily bee pollen samples (April-July) from an intensive agricultural region in Southern Germany. Environ. Sci. Pollut. Res. Int., 28, 22789-22803 (2021). https://doi.org/10.1007/s11356-020-12318-2
- Pohorecka, K., Skubida, P., Miszczak, A., Semkiw, P., Sikorski, P., Zagibajlo, K., Teper, D., Koltowski, Z., Skubida, M., Zdanska, D., Bober, A., Residues of neonicotinoid insecticides in bee collected plant materials from oilseed rape crops and their effect on bee colonies. J. Apic. Sci., 56, 115-134 (2013).
- Roszko, M.L., Kaminska, M., Szymczyk, K., Jedrzejczak, R., Levels of selected persistent organic pollutants (PCB, PBDE) and pesticides in honey bee pollen sample in poland. PLoS One, 11, e0167487 (2016),
- Greenpeace, (2023, June 19). The bee's burden: an analysis of pesticide residues in comb pollen (beebread) and trapped pollen from honey bees (Apis mellifera) in 12 uropean countries. Retrieved from https://www.greenpeace.org/static/planet4-international-stateless/2014/04/8318d052-469-thebees-burden-2.pdf
- Shahali, Y., Allergy after ingestion of bee-gathered pollen: influence of botanical origins. Ann. Allergy Asthma Immunol., 114, 250-251 (2015). https://doi.org/10.1016/j.anai.2014.11.009
- Thakur, M., Nanda, V., Composition and functionality of bee pollen: A review. Trends Food Sci. Technol., 98, 82-106 (2020). https://doi.org/10.1016/j.tifs.2020.02.001
- Ministry of Food and Drug Safety (MFDS), (2023, June 19). Regulations for Inspection of Imported Food. Retrieved from https://www.mfds.go.kr/brd/m_211/view.do?seq=14609&srchFr=&srchTo=&srchWord=&srchTp=&itm_seq_1=0&itm_seq_2=0&multi_itm_seq=0&company_cd=&company_nm=&page=6
- Powles, S.B., Yu, Q., Evolution in Action: Plants Resistant to Herbicides. Annu. Rev. Plant Biol., 61, 317-347 (2010). https://doi.org/10.1146/annurev-arplant-042809-112119
- Nc State University College of Agriculture and Life Sciences, (2023, June 19). Pesticide Toxicity to Bees "Traffic Light". Retrieved from https://www.ncagr.gov/pollinators/documents/Bee%20Pesticide%20Risk%20Traffic%20Light%203-2-17.pdf
- Bernal, J., Garrido-Bailon, E., Del, M.J., Gonzalez, A.V., Martin, R., Diego, J.C., Jimenez, J.J., Bernal, J.L., Higes, M., Overview of pesticide residues in stored pollen and their potential effect on bee colony (Apis mellifera) losses in Spain. J. Econ. Entomol., 103, 1964-1971 (2010). https://doi.org/10.1603/EC10235
- Rickwood, C.J., Galloway, T.S., Acetylcholinesterase inhibition as a biomarker of adverse effect: A study of Mytilus edulis exposed to the priority pollutant chlorfenvinphos. Aquat. Toxicol., 67, 45-56 (2004). https://doi.org/10.1016/j.aquatox.2003.11.004
- Wexler, P., 2014. Encyclopedia of Toxicology, 3rd edition, Elsvier Inc., Alpharetta, GA, USA, pp. 851-854.
- Ministry of Food and Drug Safety (MFDS), Food code, MFDS, Cheongju, Korea (2022).
- Sparks, T.C., Crossthwaite, A.J., Nauen, R., Banba, S., Cordova, D., Earley, F., Ebbinghaus-Kintscher, U., Fujioka, S., Hirao, A., Karmon, D., Kennedy, R., Nakao, T., Popham, H.J.R., Salgado, V., Watson, G.B., Wedel, B.J., Wessels, F.J., Insecticides, biologics and nematicides: Updates to IRAC's mode of action classification - a tool for resistance management. Pestic. Biochem. Physiol., 167, 104587 (2020).
- WHO, 2019, The WHO recommended classification of pesticides by hazard and guidelines to classification 2019, 2019 edition, WHO, Geneva, Switzerland, pp. 29
- Eurofins Scientific, (2022, August 1). Ban of Chlorpyrifos and Chlorpyrifos-methyl in the EU and the USA. Retrieved from https://www.eurofins.de/food-analysis/food-news/food-testing-news/ban-of-chlorpyrifos-and-chlorpyrifos-methyl/
- Guo, Z.J., Miyoshi, H., Komyoji, T., Haga, T., Fujita, T., Uncoupling activity of a newly developed fungicide, fluazinam [3-chloro-N-(3-chloro-2,6-dinitro-4-trifluoromethylphenyl)-5-trifluoromethyl-2-pyridinamine]. BBA Bioenerg., 1056, 89-92 (1991). https://doi.org/10.1016/S0005-2728(05)80077-5
- Ministry of Food and Drug Safety (MFDS), Guidelines on standard procedures for preparing analysis method, MFDS, Cheongju, Korea, 15-16 (2016).
- Ministry of Food and Drug Safety (MFDS), (2022, January 27). Analytical practices manual for pesticide residues in foods(5th ed). Retrieved from https://www.foodsafetykorea.go.kr/residue/article/view.do?articleKey=18&searchTitleFlag=1&boardKey=0&menuKey=4&subMenuKey=5¤tPageNo=1
- Taiwan Food and Drug Administration, "Standards for pesticide limits in foods", (2019, November 6). Retrieved from https://www.kati.net/file/down.do?path=/board/2019/11/&fileName=%5BKATI%5D+%EB%B9%84%EA%B4%80%EC%84%B8%EC%9E%A5%EB%B2%BD%EC%9D%B4%EC%8A%88_%EB%8C%80%EB%A7%8C%2C%EB%86%8D%EC%95%BD+%EC%9E%94%EB%A5%98+%ED%97%88%EC%9A%A9%EC%B9%98+%EC%88%98%EC%A0%95%EC%95%88+%EB%B0%9C%ED%91%9C.pdf.pdf